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addtree Additive Tree Distances

Description

Objects representing additive tree distances.

Usage

as.cl_addtree(x)
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Arguments

x an R object representing additive tree distances.

Details

Additive tree distances are object dissimilarities d satisfying the so-called additive tree conditions,
also known as four-point conditions dij+dkl ≤ max(dik+djl, dil+djk) for all quadruples i, j, k, l.
Equivalently, for each such quadruple, the largest two values of the sums dij + dkl, dik + djl, and
dil + djk must be equal. Centroid distances are additive tree distances where the inequalities in the
four-point conditions are strengthened to equalities (such that all three sums are equal), and can be
represented as dij = gi+ gj , i.e., as sums of distances from a “centroid”. See, e.g., Barthélémy and
Guénoche (1991) for more details on additive tree distances.

as.cl_addtree is a generic function. Its default method can handle objects representing ultrametric
distances and raw additive distance matrices. In addition, there is a method for coercing objects of
class "phylo" from package ape.

Functions ls_fit_addtree and ls_fit_centroid can be used to find the additive tree distance or
centroid distance minimizing least squares distance (Euclidean dissimilarity) to a given dissimilarity
object.

There is a plot method for additive tree distances.

Value

An object of class "cl_addtree" containing the additive tree distances.

References

J.-P. Barthélémy and A. Guénoche (1991). Trees and proximity representations. Chichester: John
Wiley & Sons. ISBN 0-471-92263-3.

Cassini Cassini Data

Description

A Cassini data set with 1000 points in 2-dimensional space which are drawn from the uniform
distribution on 3 structures. The two outer structures are banana-shaped; the “middle” structure in
between them is a circle.

Usage

data("Cassini")

Format

A classed list with components

x a matrix with 1000 rows and 2 columns giving the coordinates of the points.
classes a factor indicating which structure the respective points belong to.
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Details

Instances of Cassini data sets can be created using function mlbench.cassini in package mlbench.
The data set at hand was obtained using

library("mlbench")
set.seed(1234)
Cassini <- mlbench.cassini(1000)

Examples

data("Cassini")
op <- par(mfcol = c(1, 2))
## Plot the data set:
plot(Cassini$x, col = as.integer(Cassini$classes),

xlab = "", ylab = "")
## Create a "random" k-means partition of the data:
set.seed(1234)
party <- kmeans(Cassini$x, 3)
## And plot that.
plot(Cassini$x, col = cl_class_ids(party),

xlab = "", ylab = "")
## (We can see the problem ...)
par(op)

CKME Cassini Data Partitions Obtained by K-Means

Description

A cluster ensemble of 50 k-means partitions of the Cassini data into three classes.

Usage

data("CKME")

Format

A cluster ensemble of 50 (k-means) partitions.

Details

The ensemble was generated via

require("clue")
data("Cassini")
set.seed(1234)
CKME <- cl_boot(Cassini$x, 50, 3)
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cl_agreement Agreement Between Partitions or Hierarchies

Description

Compute the agreement between (ensembles) of partitions or hierarchies.

Usage

cl_agreement(x, y = NULL, method = "euclidean", ...)

Arguments

x an ensemble of partitions or hierarchies and dissimilarities, or something co-
ercible to that (see cl_ensemble).

y NULL (default), or as for x.

method a character string specifying one of the built-in methods for computing agree-
ment, or a function to be taken as a user-defined method. If a character string, its
lower-cased version is matched against the lower-cased names of the available
built-in methods using pmatch. See Details for available built-in methods.

... further arguments to be passed to methods.

Details

If y is given, its components must be of the same kind as those of x (i.e., components must either
all be partitions, or all be hierarchies or dissimilarities).

If all components are partitions, the following built-in methods for measuring agreement between
two partitions with respective membership matrices u and v (brought to a common number of
columns) are available:

"euclidean" 1− d/m, where d is the Euclidean dissimilarity of the memberships, i.e., the square
root of the minimal sum of the squared differences of u and all column permutations of v, and
m is an upper bound for the maximal Euclidean dissimilarity. See Dimitriadou, Weingessel
and Hornik (2002).

"manhattan" 1− d/m, where d is the Manhattan dissimilarity of the memberships, i.e., the mini-
mal sum of the absolute differences of u and all column permutations of v, and m is an upper
bound for the maximal Manhattan dissimilarity.

"Rand" the Rand index (the rate of distinct pairs of objects both in the same class or both in different
classes in both partitions), see Rand (1971) or Gordon (1999), page 198. For soft partitions,
(currently) the Rand index of the corresponding nearest hard partitions is used.

"cRand" the Rand index corrected for agreement by chance, see Hubert and Arabie (1985) or
Gordon (1999), page 198. Can only be used for hard partitions.

"NMI" Normalized Mutual Information, see Strehl and Ghosh (2002). For soft partitions, (cur-
rently) the NMI of the corresponding nearest hard partitions is used.
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"KP" the Katz-Powell index, i.e., the product-moment correlation coefficient between the elements
of the co-membership matrices C(u) = uu′ and C(v), respectively, see Katz and Powell
(1953). For soft partitions, (currently) the Katz-Powell index of the corresponding nearest
hard partitions is used. (Note that for hard partitions, the (i, j) entry of C(u) is one iff objects
i and j are in the same class.)

"angle" the maximal cosine of the angle between the elements of u and all column permutations
of v.

"diag" the maximal co-classification rate, i.e., the maximal rate of objects with the same class ids
in both partitions after arbitrarily permuting the ids.

"FM" the index of Fowlkes and Mallows (1983), i.e., the ratio Nxy/
√
NxNy of the number Nxy

of distinct pairs of objects in the same class in both partitions and the geometric mean of the
numbers Nx and Ny of distinct pairs of objects in the same class in partition x and partition y,
respectively. For soft partitions, (currently) the Fowlkes-Mallows index of the corresponding
nearest hard partitions is used.

"Jaccard" the Jaccard index, i.e., the ratio of the numbers of distinct pairs of objects in the same
class in both partitions and in at least one partition, respectively. For soft partitions, (currently)
the Jaccard index of the corresponding nearest hard partitions is used.

"purity" the purity of the classes of x with respect to those of y, i.e.,
∑

j maxi nij/n, where nij

is the joint frequency of objects in class i for x and in class j for y, and n is the total number
of objects.

"PS" Prediction Strength, see Tibshirani and Walter (2005): the minimum, over all classes j of y,
of the maximal rate of objects in the same class for x and in class j for y.

If all components are hierarchies, available built-in methods for measuring agreement between two
hierarchies with respective ultrametrics u and v are as follows.

"euclidean" 1/(1 + d), where d is the Euclidean dissimilarity of the ultrametrics (i.e., the square
root of the sum of the squared differences of u and v).

"manhattan" 1/(1 + d), where d is the Manhattan dissimilarity of the ultrametrics (i.e., the sum
of the absolute differences of u and v).

"cophenetic" The cophenetic correlation coefficient. (I.e., the product-moment correlation of the
ultrametrics.)

"angle" the cosine of the angle between the ultrametrics.

"gamma" 1 − d, where d is the rate of inversions between the associated ultrametrics (i.e., the rate
of pairs (i, j) and (k, l) for which uij < ukl and vij > vkl). (This agreement measure is a
linear transformation of Kruskal’s γ.)

The measures based on ultrametrics also allow computing agreement with “raw” dissimilarities on
the underlying objects (R objects inheriting from class "dist").

If a user-defined agreement method is to be employed, it must be a function taking two clusterings
as its arguments.

Symmetric agreement objects of class "cl_agreement" are implemented as symmetric proximity
objects with self-proximities identical to one, and inherit from class "cl_proximity". They can
be coerced to dense square matrices using as.matrix. It is possible to use 2-index matrix-style
subscripting for such objects; unless this uses identical row and column indices, this results in a
(non-symmetric agreement) object of class "cl_cross_agreement".
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Value

If y is NULL, an object of class "cl_agreement" containing the agreements between the all pairs
of components of x. Otherwise, an object of class "cl_cross_agreement" with the agreements
between the components of x and the components of y.

References

E. Dimitriadou, A. Weingessel and K. Hornik (2002). A combination scheme for fuzzy clustering.
International Journal of Pattern Recognition and Artificial Intelligence, 16, 901–912.
doi:10.1142/S0218001402002052.

E. B. Fowlkes and C. L. Mallows (1983). A method for comparing two hierarchical clusterings.
Journal of the American Statistical Association, 78, 553–569.
doi:10.1080/01621459.1983.10478008.

A. D. Gordon (1999). Classification (2nd edition). Boca Raton, FL: Chapman & Hall/CRC.

L. Hubert and P. Arabie (1985). Comparing partitions. Journal of Classification, 2, 193–218.
doi:10.1007/bf01908075.

W. M. Rand (1971). Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association, 66, 846–850. doi:10.2307/2284239.

L. Katz and J. H. Powell (1953). A proposed index of the conformity of one sociometric measure-
ment to another. Psychometrika, 18, 249–256. doi:10.1007/BF02289063.

A. Strehl and J. Ghosh (2002). Cluster ensembles — A knowledge reuse framework for combining
multiple partitions. Journal of Machine Learning Research, 3, 583–617.
https://www.jmlr.org/papers/volume3/strehl02a/strehl02a.pdf.

R. Tibshirani and G. Walter (2005). Cluster validation by Prediction Strength. Journal of Compu-
tational and Graphical Statistics, 14/3, 511–528. doi:10.1198/106186005X59243.

See Also

cl_dissimilarity; classAgreement in package e1071.

Examples

## An ensemble of partitions.
data("CKME")
pens <- CKME[1 : 20] # for saving precious time ...
summary(c(cl_agreement(pens)))
summary(c(cl_agreement(pens, method = "Rand")))
summary(c(cl_agreement(pens, method = "diag")))
cl_agreement(pens[1:5], pens[6:7], method = "NMI")
## Equivalently, using subscripting.
cl_agreement(pens, method = "NMI")[1:5, 6:7]

## An ensemble of hierarchies.
d <- dist(USArrests)
hclust_methods <-

c("ward", "single", "complete", "average", "mcquitty")
hclust_results <- lapply(hclust_methods, function(m) hclust(d, m))
names(hclust_results) <- hclust_methods

https://doi.org/10.1142/S0218001402002052
https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/10.1007/bf01908075
https://doi.org/10.2307/2284239
https://doi.org/10.1007/BF02289063
https://www.jmlr.org/papers/volume3/strehl02a/strehl02a.pdf
https://doi.org/10.1198/106186005X59243
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hens <- cl_ensemble(list = hclust_results)
summary(c(cl_agreement(hens)))
## Note that the Euclidean agreements are *very* small.
## This is because the ultrametrics differ substantially in height:
u <- lapply(hens, cl_ultrametric)
round(sapply(u, max), 3)
## Rescaling the ultrametrics to [0, 1] gives:
u <- lapply(u, function(x) (x - min(x)) / (max(x) - min(x)))
shens <- cl_ensemble(list = lapply(u, as.cl_dendrogram))
summary(c(cl_agreement(shens)))
## Au contraire ...
summary(c(cl_agreement(hens, method = "cophenetic")))
cl_agreement(hens[1:3], hens[4:5], method = "gamma")

cl_bag Bagging for Clustering

Description

Construct partitions of objects by running a base clustering algorithm on bootstrap samples from a
given data set, and “suitably” aggregating these primary partitions.

Usage

cl_bag(x, B, k = NULL, algorithm = "kmeans", parameters = NULL,
method = "DFBC1", control = NULL)

Arguments

x the data set of objects to be clustered, as appropriate for the base clustering
algorithm.

B an integer giving the number of bootstrap replicates.

k NULL (default), or an integer giving the number of classes to be used for a parti-
tioning base algorithm.

algorithm a character string or function specifying the base clustering algorithm.

parameters a named list of additional arguments to be passed to the base algorithm.

method a character string indicating the bagging method to use. Currently, only method
"DFBC1" is available, which implements algorithm BagClust1 in Dudoit & Fridlyand
(2003).

control a list of control parameters for the aggregation. Currently, not used.
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Details

Bagging for clustering is really a rather general conceptual framework than a specific algorithm. If
the primary partitions generated in the bootstrap stage form a cluster ensemble (so that class mem-
berships of the objects in x can be obtained), consensus methods for cluster ensembles (as imple-
mented, e.g., in cl_consensus and cl_medoid) can be employed for the aggregation stage. In par-
ticular, (possibly new) bagging algorithms can easily be realized by directly running cl_consensus
on the results of cl_boot.

In BagClust1, aggregation proceeds by generating a reference partition by running the base clus-
tering algorithm on the whole given data set, and averaging the ensemble memberships after opti-
mally matching them to the reference partition (in fact, by minimizing Euclidean dissimilarity, see
cl_dissimilarity).

If the base clustering algorithm yields prototypes, aggregation can be based on clustering these.
This is the idea underlying the “Bagged Clustering” algorithm introduced in Leisch (1999) and
implemented by function bclust in package e1071.

Value

An R object representing a partition of the objects given in x.

References

S. Dudoit and J. Fridlyand (2003). Bagging to improve the accuracy of a clustering procedure.
Bioinformatics, 19/9, 1090–1099. doi:10.1093/bioinformatics/btg038.

F. Leisch (1999). Bagged Clustering. Working Paper 51, SFB “Adaptive Information Systems and
Modeling in Economics and Management Science”. https://epub.wu.ac.at/1272/.

Examples

set.seed(1234)
## Run BagClust1 on the Cassini data.
data("Cassini")
party <- cl_bag(Cassini$x, 50, 3)
plot(Cassini$x, col = cl_class_ids(party), xlab = "", ylab = "")
## Actually, using fuzzy c-means as a base learner works much better:
if(require("e1071", quietly = TRUE)) {

party <- cl_bag(Cassini$x, 20, 3, algorithm = "cmeans")
plot(Cassini$x, col = cl_class_ids(party), xlab = "", ylab = "")

}

cl_boot Bootstrap Resampling of Clustering Algorithms

Description

Generate bootstrap replicates of the results of applying a “base” clustering algorithm to a given data
set.

https://doi.org/10.1093/bioinformatics/btg038
https://epub.wu.ac.at/1272/
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Usage

cl_boot(x, B, k = NULL,
algorithm = if (is.null(k)) "hclust" else "kmeans",
parameters = list(), resample = FALSE)

Arguments

x the data set of objects to be clustered, as appropriate for the base clustering
algorithm.

B an integer giving the number of bootstrap replicates.

k NULL (default), or an integer giving the number of classes to be used for a parti-
tioning base algorithm.

algorithm a character string or function specifying the base clustering algorithm.

parameters a named list of additional arguments to be passed to the base algorithm.

resample a logical indicating whether the data should be resampled in addition to “sam-
pling from the algorithm”. If resampling is used, the class memberships of the
objects given in x are predicted from the results of running the base algorithm
on bootstrap samples of x.

Details

This is a rather simple-minded function with limited applicability, and mostly useful for studying
the effect of (uncontrolled) random initializations of fixed-point partitioning algorithms such as
kmeans or cmeans, see the examples. To study the effect of varying control parameters or explicitly
providing random starting values, the respective cluster ensemble has to be generated explicitly
(most conveniently by using replicate to create a list lst of suitable instances of clusterings
obtained by the base algorithm, and using cl_ensemble(list = lst) to create the ensemble).

Value

A cluster ensemble of length B, with either (if resampling is not used, default) the results of running
the base algorithm on the given data set, or (if resampling is used) the memberships for the given
data predicted from the results of running the base algorithm on bootstrap samples of the data.

Examples

## Study e.g. the effect of random kmeans() initializations.
data("Cassini")
pens <- cl_boot(Cassini$x, 15, 3)
diss <- cl_dissimilarity(pens)
summary(c(diss))
plot(hclust(diss))
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cl_classes Cluster Classes

Description

Extract the classes in a partition or hierarchy.

Usage

cl_classes(x)

Arguments

x an R object representing a partition or hierarchy of objects.

Details

For partitions, the classes are the equivalence classes (“clusters”) of the partition; for soft partitions,
the classes of the nearest hard partition are used.

For hierarchies represented by trees, the classes are the sets of objects corresponding to (joined at
or split by) the nodes of the tree.

Value

A list inheriting from "cl_classes_of_objects" of vectors indicating the classes.

cl_consensus Consensus Partitions and Hierarchies

Description

Compute the consensus clustering of an ensemble of partitions or hierarchies.

Usage

cl_consensus(x, method = NULL, weights = 1, control = list())

Arguments

x an ensemble of partitions or hierarchies, or something coercible to that (see
cl_ensemble).

method a character string specifying one of the built-in methods for computing consen-
sus clusterings, or a function to be taken as a user-defined method, or NULL (de-
fault value). If a character string, its lower-cased version is matched against the
lower-cased names of the available built-in methods using pmatch. See Details
for available built-in methods and defaults.
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weights a numeric vector with non-negative case weights. Recycled to the number of
elements in the ensemble given by x if necessary.

control a list of control parameters. See Details.

Details

Consensus clusterings “synthesize” the information in the elements of a cluster ensemble into a sin-
gle clustering, often by minimizing a criterion function measuring how dissimilar consensus candi-
dates are from the (elements of) the ensemble (the so-called “optimization approach” to consensus
clustering).

The most popular criterion functions are of the form L(x) =
∑

wbd(xb, x)
p, where d is a suitable

dissimilarity measure (see cl_dissimilarity), wb is the case weight given to element xb of the
ensemble, and p ≥ 1. If p = 1 and minimization is over all possible base clusterings, a consensus
solution is called a median of the ensemble; if minimization is restricted to the elements of the
ensemble, a consensus solution is called a medoid (see cl_medoid). For p = 2, we obtain least
squares consensus partitions and hierarchies (generalized means). See also Gordon (1999) for more
information.

If all elements of the ensemble are partitions, the built-in consensus methods compute consensus
partitions by minimizing a criterion of the form L(x) =

∑
wbd(xb, x)

p over all hard or soft parti-
tions x with a given (maximal) number k of classes. Available built-in methods are as follows.

"SE" a fixed-point algorithm for obtaining soft least squares Euclidean consensus partitions (i.e.,
for minimizing L with Euclidean dissimilarity d and p = 2 over all soft partitions with a given
maximal number of classes).
This iterates between individually matching all partitions to the current approximation to the
consensus partition, and computing the next approximation as the membership matrix clos-
est to a suitable weighted average of the memberships of all partitions after permuting their
columns for the optimal matchings of class ids.
The following control parameters are available for this method.
k an integer giving the number of classes to be used for the least squares consensus partition.

By default, the maximal number of classes in the ensemble is used.
maxiter an integer giving the maximal number of iterations to be performed. Defaults to

100.
nruns an integer giving the number of runs to be performed. Defaults to 1.
reltol the relative convergence tolerance. Defaults to sqrt(.Machine$double.eps).
start a matrix with number of rows equal to the number of objects of the cluster ensemble,

and k columns, to be used as a starting value, or a list of such matrices. By default,
suitable random membership matrices are used.

verbose a logical indicating whether to provide some output on minimization progress. De-
faults to getOption("verbose").

In the case of multiple runs, the first optimum found is returned.
This method can also be referred to as "soft/euclidean".

"GV1" the fixed-point algorithm for the “first model” in Gordon and Vichi (2001) for minimizing
L with d being GV1 dissimilarity and p = 2 over all soft partitions with a given maximal
number of classes.
This is similar to "SE", but uses GV1 rather than Euclidean dissimilarity.
Available control parameters are the same as for "SE".
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"DWH" an extension of the greedy algorithm in Dimitriadou, Weingessel and Hornik (2002) for
(approximately) obtaining soft least squares Euclidean consensus partitions. The reference
provides some structure theory relating finding the consensus partition to an instance of the
multiple assignment problem, which is known to be NP-hard, and suggests a simple heuristic
based on successively matching an individual partition xb to the current approximation to the
consensus partition, and compute the memberships of the next approximation as a weighted
average of those of the current one and of xb after permuting its columns for the optimal
matching of class ids.
The following control parameters are available for this method.

k an integer giving the number of classes to be used for the least squares consensus partition.
By default, the maximal number of classes in the ensemble is used.

order a permutation of the integers from 1 to the size of the ensemble, specifying the order
in which the partitions in the ensemble should be aggregated. Defaults to using a random
permutation (unlike the reference, which does not permute at all).

"HE" a fixed-point algorithm for obtaining hard least squares Euclidean consensus partitions (i.e.,
for minimizing L with Euclidean dissimilarity d and p = 2 over all hard partitions with a
given maximal number of classes.)
Available control parameters are the same as for "SE".
This method can also be referred to as "hard/euclidean".

"SM" a fixed-point algorithm for obtaining soft median Manhattan consensus partitions (i.e., for
minimizing L with Manhattan dissimilarity d and p = 1 over all soft partitions with a given
maximal number of classes).
Available control parameters are the same as for "SE".
This method can also be referred to as "soft/manhattan".

"HM" a fixed-point algorithm for obtaining hard median Manhattan consensus partitions (i.e., for
minimizing L with Manhattan dissimilarity d and p = 1 over all hard partitions with a given
maximal number of classes).
Available control parameters are the same as for "SE".
This method can also be referred to as "hard/manhattan".

"GV3" a SUMT algorithm for the “third model” in Gordon and Vichi (2001) for minimizing L with
d being co-membership dissimilarity and p = 2. (See sumt for more information on the SUMT
approach.) This optimization problem is equivalent to finding the membership matrix m for
which the sum of the squared differences between C(m) = mm′ and the weighted average
co-membership matrix

∑
b wbC(mb) of the partitions is minimal.

Available control parameters are method, control, eps, q, and verbose, which have the same
roles as for sumt, and the following.

k an integer giving the number of classes to be used for the least squares consensus partition.
By default, the maximal number of classes in the ensemble is used.

nruns an integer giving the number of runs to be performed. Defaults to 1.
start a matrix with number of rows equal to the size of the cluster ensemble, and k columns,

to be used as a starting value, or a list of such matrices. By default, a membership based
on a rank k approximation to the weighted average co-membership matrix is used.

In the case of multiple runs, the first optimum found is returned.
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"soft/symdiff" a SUMT approach for minimizing L =
∑

wbd(xb, x) over all soft partitions
with a given maximal number of classes, where d is the Manhattan dissimilarity of the co-
membership matrices (coinciding with symdiff partition dissimilarity in the case of hard par-
titions).
Available control parameters are the same as for "GV3".

"hard/symdiff" an exact solver for minimizing L =
∑

wbd(xb, x) over all hard partitions (pos-
sibly with a given maximal number of classes as specified by the control parameter k), where
d is symdiff partition dissimilarity (so that soft partitions in the ensemble are replaced by their
closest hard partitions), or equivalently, Rand distance or pair-bonds (Boorman-Arabie D)
distance. The consensus solution is found via mixed linear or quadratic programming.

By default, method "SE" is used for ensembles of partitions.

If all elements of the ensemble are hierarchies, the following built-in methods for computing con-
sensus hierarchies are available.

"euclidean" an algorithm for minimizing L(x) =
∑

wbd(xb, x)
2 over all dendrograms, where d

is Euclidean dissimilarity. This is equivalent to finding the best least squares ultrametric ap-
proximation of the weighted average d =

∑
wbub of the ultrametrics ub of the hierarchies xb,

which is attempted by calling ls_fit_ultrametric on d with appropriate control parameters.
This method can also be referred to as "cophenetic".

"manhattan" a SUMT for minimizing L =
∑

wbd(xb, x) over all dendrograms, where d is Man-
hattan dissimilarity.
Available control parameters are the same as for "euclidean".

"majority" a hierarchy obtained from an extension of the majority consensus tree of Margush and
McMorris (1981), which minimizes L(x) =

∑
wbd(xb, x) over all dendrograms, where d is

the symmetric difference dissimilarity. The unweighted p-majority tree is the n-tree (hierarchy
in the strict sense) consisting of all subsets of objects contained in more than 100p percent of
the n-trees Tb induced by the dendrograms, where 1/2 ≤ p < 1 and p = 1/2 (default)
corresponds to the standard majority tree. In the weighted case, it consists of all subsets A for
which

∑
b:A∈Tb

wb > Wp, where W =
∑

b wb. We also allow for p = 1, which gives the
strict consensus tree consisting of all subsets contained in each of the n-trees. The majority
dendrogram returned is a representation of the majority tree where all splits have height one.
The fraction p can be specified via the control parameter p.

By default, method "euclidean" is used for ensembles of hierarchies.

If a user-defined consensus method is to be employed, it must be a function taking the cluster
ensemble, the case weights, and a list of control parameters as its arguments, with formals named
x, weights, and control, respectively.

Most built-in methods use heuristics for solving hard optimization problems, and cannot be guaran-
teed to find a global minimum. Standard practice would recommend to use the best solution found
in “sufficiently many” replications of the methods.

Value

The consensus partition or hierarchy.
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See Also

cl_medoid, consensus

Examples

## Consensus partition for the Rosenberg-Kim kinship terms partition
## data based on co-membership dissimilarities.
data("Kinship82")
m1 <- cl_consensus(Kinship82, method = "GV3",

control = list(k = 3, verbose = TRUE))
## (Note that one should really use several replicates of this.)
## Value for criterion function to be minimized:
sum(cl_dissimilarity(Kinship82, m1, "comem") ^ 2)
## Compare to the consensus solution given in Gordon & Vichi (2001).
data("Kinship82_Consensus")
m2 <- Kinship82_Consensus[["JMF"]]
sum(cl_dissimilarity(Kinship82, m2, "comem") ^ 2)
## Seems we get a better solution ...
## How dissimilar are these solutions?
cl_dissimilarity(m1, m2, "comem")
## How "fuzzy" are they?
cl_fuzziness(cl_ensemble(m1, m2))
## Do the "nearest" hard partitions fully agree?
cl_dissimilarity(as.cl_hard_partition(m1),

as.cl_hard_partition(m2))

## Consensus partition for the Gordon and Vichi (2001) macroeconomic
## partition data based on Euclidean dissimilarities.
data("GVME")
set.seed(1)
## First, using k = 2 classes.
m1 <- cl_consensus(GVME, method = "GV1",

control = list(k = 2, verbose = TRUE))
## (Note that one should really use several replicates of this.)
## Value of criterion function to be minimized:
sum(cl_dissimilarity(GVME, m1, "GV1") ^ 2)
## Compare to the consensus solution given in Gordon & Vichi (2001).
data("GVME_Consensus")
m2 <- GVME_Consensus[["MF1/2"]]

https://doi.org/10.1142/S0218001402002052
https://doi.org/10.1007/BF02294837
https://doi.org/10.1007/BF02459446
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sum(cl_dissimilarity(GVME, m2, "GV1") ^ 2)
## Seems we get a slightly better solution ...
## But note that
cl_dissimilarity(m1, m2, "GV1")
## and that the maximal deviation of the memberships is
max(abs(cl_membership(m1) - cl_membership(m2)))
## so the differences seem to be due to rounding.
## Do the "nearest" hard partitions fully agree?
table(cl_class_ids(m1), cl_class_ids(m2))

## And now for k = 3 classes.
m1 <- cl_consensus(GVME, method = "GV1",

control = list(k = 3, verbose = TRUE))
sum(cl_dissimilarity(GVME, m1, "GV1") ^ 2)
## Compare to the consensus solution given in Gordon & Vichi (2001).
m2 <- GVME_Consensus[["MF1/3"]]
sum(cl_dissimilarity(GVME, m2, "GV1") ^ 2)
## This time we look much better ...
## How dissimilar are these solutions?
cl_dissimilarity(m1, m2, "GV1")
## Do the "nearest" hard partitions fully agree?
table(cl_class_ids(m1), cl_class_ids(m2))

cl_dissimilarity Dissimilarity Between Partitions or Hierarchies

Description

Compute the dissimilarity between (ensembles) of partitions or hierarchies.

Usage

cl_dissimilarity(x, y = NULL, method = "euclidean", ...)

Arguments

x an ensemble of partitions or hierarchies and dissimilarities, or something co-
ercible to that (see cl_ensemble).

y NULL (default), or as for x.

method a character string specifying one of the built-in methods for computing dissimi-
larity, or a function to be taken as a user-defined method. If a character string, its
lower-cased version is matched against the lower-cased names of the available
built-in methods using pmatch. See Details for available built-in methods.

... further arguments to be passed to methods.
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Details

If y is given, its components must be of the same kind as those of x (i.e., components must either
all be partitions, or all be hierarchies or dissimilarities).

If all components are partitions, the following built-in methods for measuring dissimilarity between
two partitions with respective membership matrices u and v (brought to a common number of
columns) are available:

"euclidean" the Euclidean dissimilarity of the memberships, i.e., the square root of the minimal
sum of the squared differences of u and all column permutations of v. See Dimitriadou,
Weingessel and Hornik (2002).

"manhattan" the Manhattan dissimilarity of the memberships, i.e., the minimal sum of the abso-
lute differences of u and all column permutations of v.

"comemberships" the Euclidean dissimilarity of the elements of the co-membership matrices C(u) =
uu′ and C(v), i.e., the square root of the sum of the squared differences of C(u) and C(v).

"symdiff" the cardinality of the symmetric set difference of the sets of co-classified pairs of dis-
tinct objects in the partitions. I.e., the number of distinct pairs of objects in the same class
in exactly one of the partitions. (Alternatively, the cardinality of the symmetric set difference
between the (binary) equivalence relations corresponding to the partitions.) For soft partitions,
(currently) the symmetric set difference of the corresponding nearest hard partitions is used.

"Rand" the Rand distance, i.e., the rate of distinct pairs of objects in the same class in exactly one
of the partitions. (Related to the Rand index a via the linear transformation d = (1 − a)/2.)
For soft partitions, (currently) the Rand distance of the corresponding nearest hard partitions
is used.

"GV1" the square root of the dissimilarity ∆1 used for the first model in Gordon and Vichi (2001),
i.e., the square root of the minimal sum of the squared differences of the matched non-zero
columns of u and v.

"BA/d" distance measures for hard partitions discussed in Boorman and Arabie (1972), with d
one of ‘A’, ‘C’, ‘D’, or ‘E’. For soft partitions, the distances of the corresponding nearest hard
partitions are used.
"BA/A" is the minimum number of single element moves (move from one class to another or
a new one) needed to transform one partition into the other. Introduced in Rubin (1967).
"BA/C" is the minimum number of lattice moves for transforming one partition into the other,
where partitions are said to be connected by a lattice move if one is just finer than the other
(i.e., there is no other partition between them) in the partition lattice (see cl_meet). Equiv-
alently, with z the join of x and y and S giving the number of classes, this can be written as
S(x) + S(y)− 2S(z). Attributed to David Pavy.
"BA/D" is the “pair-bonds” distance, which can be defined as S(x)+S(y)−2S(z), with z the
meet of x and y and S the supervaluation (i.e., non-decreasing with respect to the partial order
on the partition lattice) function

∑
i(ni(ni − 1))/(n(n − 1)), where the ni are the numbers

of objects in the respective classes of the partition (such that ni(ni − 1)/2 are the numbers of
pair bonds in the classes), and n the total number of objects.
"BA/E" is the normalized information distance, defined as 1 − I/H , where I is the average
mutual information between the partitions, and H is the average entropy of the meet z of the
partitions. Introduced in Rajski (1961).
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(Boorman and Arabie also discuss a distance measure (B) based on the minimum number of
set moves needed to transform one partition into the other, which, differently from the A and
C distance measures is hard to compute (Day, 1981) and (currently) not provided.)

"VI" Variation of Information, see Meila (2003). If ... has an argument named weights, it is
taken to specify case weights.

"Mallows" the Mallows-type distance by Zhou, Li and Zha (2005), which is related to the Monge-
Kantorovich mass transfer problem, and given as the p-th root of the minimal value of the
transportation problem

∑
wjk

∑
i |uij − vik|p with constraints wjk ≥ 0,

∑
j wjk = αj ,∑

k wjk = βk, where
∑

j αj =
∑

k βk. The parameters p, α and β all default to one (in this
case, the Mallows distance coincides with the Manhattan dissimilarity), and can be specified
via additional arguments named p, alpha, and beta, respectively.

"CSSD" the Cluster Similarity Sensitive Distance of Zhou, Li and Zha (2005), which is given as the
minimal value of

∑
k,l(1 − 2wkl/(αk + βl))Lkl, where Lkl =

∑
i uikvild(px;k, py;l) with

px;k and py;l the prototype of the k-th class of x and the l-th class of y, respectively, d is the
distance between these, and the wkl as for Mallows distance. If prototypes are matrices, the
Euclidean distance between these is used as default. Using the additional argument L, one can
give a matrix of Lkl values, or the function d. Parameters α and β all default to one, and can
be specified via additional arguments named alpha and beta, respectively.

For hard partitions, both Manhattan and squared Euclidean dissimilarity give twice the transfer
distance (Charon et al., 2005), which is the minimum number of objects that must be removed so
that the implied partitions (restrictions to the remaining objects) are identical. This is also known
as the R-metric in Day (1981), i.e., the number of augmentations and removals of single objects
needed to transform one partition into the other, and the partition-distance in Gusfield (2002), and
equals twice the number of single element moves distance of Boorman and Arabie.

For hard partitions, the pair-bonds (Boorman-Arabie D) distance is identical to the Rand distance,
and can also be written as the Manhattan distance between the co-membership matrices correspond-
ing to the partitions, or equivalently, their symdiff distance, normalized by n(n− 1).

If all components are hierarchies, available built-in methods for measuring dissimilarity between
two hierarchies with respective ultrametrics u and v are as follows.

"euclidean" the Euclidean dissimilarity of the ultrametrics (i.e., the square root of the sum of the
squared differences of u and v).

"manhattan" the Manhattan dissimilarity of the ultrametrics (i.e., the sum of the absolute differ-
ences of u and v).

"cophenetic" 1 − c2, where c is the cophenetic correlation coefficient (i.e., the product-moment
correlation of the ultrametrics).

"gamma" the rate of inversions between the ultrametrics (i.e., the rate of pairs (i, j) and (k, l) for
which uij < ukl and vij > vkl).

"symdiff" the cardinality of the symmetric set difference of the sets of classes (hierarchies in the
strict sense) induced by the dendrograms. I.e., the number of sets of objects obtained by a split
in exactly one of the hierarchies.

"Chebyshev" the Chebyshev (maximal) dissimilarity of the ultrametrics (i.e., the maximum of the
absolute differences of u and v).
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"Lyapunov" the logarithm of the product of the maximal and minimal ratios of the ultrametrics.
This is also known as the “Hilbert projective metric” on the cone represented by the ultramet-
rics (e.g., Jardine & Sibson (1971), page 107), and only defined for strict ultrametrics (which
are strictly positive for distinct objects).

"BO" the mδ family of tree metrics by Boorman and Olivier (1973), which are of the form mδ =∫∞
0

δ(p(h), q(h))dh, where p(h) and q(h) are the hard partitions obtaining by cutting the
trees (dendrograms) at height h, and δ is a suitably dissimilarity measure for partitions. In
particular, when taking δ as symdiff or Rand dissimilarity, mδ is the Manhattan dissimilarity
of the hierarchies.
If ... has an argument named delta it is taken to specify the partition dissimilarity δ to be
employed.

"spectral" the spectral norm (2-norm) of the differences of the ultrametrics, suggested in Mérigot,
Durbec, and Gaertner (2010).

The measures based on ultrametrics also allow computing dissimilarity with “raw” dissimilarities
on the underlying objects (R objects inheriting from class "dist").

If a user-defined dissimilarity method is to be employed, it must be a function taking two clusterings
as its arguments.

Symmetric dissimilarity objects of class "cl_dissimilarity" are implemented as symmetric prox-
imity objects with self-proximities identical to zero, and inherit from class "cl_proximity". They
can be coerced to dense square matrices using as.matrix. It is possible to use 2-index matrix-style
subscripting for such objects; unless this uses identical row and column indices, this results in a
(non-symmetric dissimilarity) object of class "cl_cross_dissimilarity".

Symmetric dissimilarity objects also inherit from class "dist" (although they currently do not
“strictly” extend this class), thus making it possible to use them directly for clustering algorithms
based on dissimilarity matrices of this class, see the examples.

Value

If y is NULL, an object of class "cl_dissimilarity" containing the dissimilarities between all
pairs of components of x. Otherwise, an object of class "cl_cross_dissimilarity" with the
dissimilarities between the components of x and the components of y.

References

S. A. Boorman and P. Arabie (1972). Structural measures and the method of sorting. In R. N. Shep-
ard, A. K. Romney, & S. B. Nerlove (eds.), Multidimensional Scaling: Theory and Applications in
the Behavioral Sciences, 1: Theory (pages 225–249). New York: Seminar Press.

S. A. Boorman and D. C. Olivier (1973). Metrics on spaces of finite trees. Journal of Mathematical
Psychology, 10, 26–59. doi:10.1016/00222496(73)900035.

I. Charon, L. Denoeud, A. Guénoche and O. Hudry (2006). Maximum Transfer Distance Between
Partitions. Journal of Classification, 23, 103–121. doi:10.1007/s0035700600062.

W. E. H. Day (1981). The complexity of computing metric distances between partitions. Mathe-
matical Social Sciences, 1, 269–287. doi:10.1016/01654896(81)900421.

E. Dimitriadou, A. Weingessel and K. Hornik (2002). A combination scheme for fuzzy clustering.
International Journal of Pattern Recognition and Artificial Intelligence, 16, 901–912.
doi:10.1142/S0218001402002052.

https://doi.org/10.1016/0022-2496%2873%2990003-5
https://doi.org/10.1007/s00357-006-0006-2
https://doi.org/10.1016/0165-4896%2881%2990042-1
https://doi.org/10.1142/S0218001402002052


20 cl_dissimilarity

A. D. Gordon and M. Vichi (2001). Fuzzy partition models for fitting a set of partitions. Psychome-
trika, 66, 229–248. doi:10.1007/BF02294837.

D. Gusfield (2002). Partition-distance: A problem and class of perfect graphs arising in clustering.
Information Processing Letters, 82, 159–164. doi:10.1016/S00200190(01)002630.

N. Jardine and E. Sibson (1971). Mathematical Taxonomy. London: Wiley.

M. Meila (2003). Comparing clusterings by the variation of information. In B. Schölkopf and M. K.
Warmuth (eds.), Learning Theory and Kernel Machines, pages 173–187. Springer-Verlag: Lecture
Notes in Computer Science 2777.

B. Mérigot, J.-P. Durbec and J.-C. Gaertner (2010). On goodness-of-fit measure for dendrogram-
based analyses. Ecology, 91, 1850—-1859. doi:10.1890/091387.1.

C. Rajski (1961). A metric space of discrete probability distributions, Information and Control, 4,
371–377. doi:10.1016/S00199958(61)800557.

J. Rubin (1967). Optimal classification into groups: An approach for solving the taxonomy problem.
Journal of Theoretical Biology, 15, 103–144. doi:10.1016/00225193(67)90046X.

D. Zhou, J. Li and H. Zha (2005). A new Mallows distance based metric for comparing cluster-
ings. In Proceedings of the 22nd international Conference on Machine Learning (Bonn, Germany,
August 07–11, 2005), pages 1028–1035. ICML ’05, volume 119. ACM Press, New York, NY.
doi:10.1145/1102351.1102481.

See Also

cl_agreement

Examples

## An ensemble of partitions.
data("CKME")
pens <- CKME[1 : 30]
diss <- cl_dissimilarity(pens)
summary(c(diss))
cl_dissimilarity(pens[1:5], pens[6:7])
## Equivalently, using subscripting.
diss[1:5, 6:7]
## Can use the dissimilarities for "secondary" clustering
## (e.g. obtaining hierarchies of partitions):
hc <- hclust(diss)
plot(hc)

## Example from Boorman and Arabie (1972).
P1 <- as.cl_partition(c(1, 2, 2, 2, 3, 3, 2, 2))
P2 <- as.cl_partition(c(1, 1, 2, 2, 3, 3, 4, 4))
cl_dissimilarity(P1, P2, "BA/A")
cl_dissimilarity(P1, P2, "BA/C")

## Hierarchical clustering.
d <- dist(USArrests)
x <- hclust(d)
cl_dissimilarity(x, d, "cophenetic")
cl_dissimilarity(x, d, "gamma")

https://doi.org/10.1007/BF02294837
https://doi.org/10.1016/S0020-0190%2801%2900263-0
https://doi.org/10.1890/09-1387.1
https://doi.org/10.1016/S0019-9958%2861%2980055-7
https://doi.org/10.1016/0022-5193%2867%2990046-X
https://doi.org/10.1145/1102351.1102481
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cl_ensemble Cluster Ensembles

Description

Creation and manipulation of cluster ensembles.

Usage

cl_ensemble(..., list = NULL)
as.cl_ensemble(x)
is.cl_ensemble(x)

Arguments

... R objects representing clusterings of or dissimilarities between the same objects.

list a list of R objects as in ....

x for as.cl_ensemble, an R object as in ...; for is.cl_ensemble, an arbitrary
R object.

Details

cl_ensemble creates “cluster ensembles”, which are realized as lists of clusterings (or dissimilari-
ties) with additional class information, always inheriting from "cl_ensemble". All elements of the
ensemble must have the same number of objects.

If all elements are partitions, the ensemble has class "cl_partition_ensemble"; if all elements are
dendrograms, it has class "cl_dendrogram_ensemble" and inherits from "cl_hierarchy_ensemble";
if all elements are hierarchies (but not always dendrograms), it has class "cl_hierarchy_ensemble".
Note that empty or “mixed” ensembles cannot be categorized according to the kind of elements they
contain, and hence only have class "cl_ensemble".

The list representation makes it possible to use lapply for computations on the individual cluster-
ings in (i.e., the components of) a cluster ensemble.

Available methods for cluster ensembles include those for subscripting, c, rep, and print. There
is also a plot method for ensembles for which all elements can be plotted (currently, additive trees,
dendrograms and ultrametrics).

Value

cl_ensemble returns a list of the given clusterings or dissimilarities, with additional class informa-
tion (see Details).
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Examples

d <- dist(USArrests)
hclust_methods <-

c("ward", "single", "complete", "average", "mcquitty")
hclust_results <- lapply(hclust_methods, function(m) hclust(d, m))
names(hclust_results) <- hclust_methods
## Now create an ensemble from the results.
hens <- cl_ensemble(list = hclust_results)
hens
## Subscripting.
hens[1 : 3]
## Replication.
rep(hens, 3)
## Plotting.
plot(hens, main = names(hens))
## And continue to analyze the ensemble, e.g.
round(cl_dissimilarity(hens, method = "gamma"), 4)

cl_fuzziness Partition Fuzziness

Description

Compute the fuzziness of partitions.

Usage

cl_fuzziness(x, method = NULL, normalize = TRUE)

Arguments

x a cluster ensemble of partitions, or an R object coercible to such.

method a character string indicating the fuzziness measure to be employed, or NULL
(default), or a function to be taken as a user-defined method. Currently available
built-in methods are "PC" (Partition Coefficient) and "PE" (Partition Entropy),
with the default corresponding to the first one. If method is a character string, its
lower-cased version is matched against the lower-cased names of the available
built-in methods using pmatch.

normalize a logical indicating whether the fuzziness measure should be normalized in a
way that hard partitions have value 0, and “completely fuzzy” partitions (where
for all objects, all classes get the same membership) have value 1.

Details

If m contains the membership values of a partition, the (unnormalized) Partition Coefficient and
Partition Entropy are given by

∑
n,i m

2
n,i and

∑
n,i H(mn,i), respectively, where H(u) = u log u−

(1− u) log(1− u).
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Note that the normalization used here is different from the normalizations typically found in the
literature.

If a user-defined fuzziness method is to be employed, is must be a function taking a matrix of mem-
bership values and a logical to indicate whether normalization is to be performed as its arguments
(in that order; argument names are not used).

Value

An object of class "cl_fuzziness" giving the fuzziness values.

References

J. C. Bezdek (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. New York:
Plenum.

See Also

Function fclustIndex in package e1071, which also computes several other “fuzzy cluster in-
dexes” (typically based on more information than just the membership values).

Examples

if(require("e1071", quietly = TRUE)) {
## Use an on-line version of fuzzy c-means from package e1071 if
## available.
data("Cassini")
pens <- cl_boot(Cassini$x, B = 15, k = 3, algorithm = "cmeans",

parameters = list(method = "ufcl"))
pens
summary(cl_fuzziness(pens, "PC"))
summary(cl_fuzziness(pens, "PE"))

}

cl_margin Membership Margins

Description

Compute the margin of the memberships of a partition, i.e., the difference between the largest and
second largest membership values of the respective objects.

Usage

cl_margin(x)

Arguments

x an R object representing a partition of objects.
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Details

For hard partitions, the margins are always 1.

For soft partitions, the margins may be taken as an indication of the “sureness” of classifying an
object to the class with maximum membership value.

Examples

data("GVME")
## Look at the classes obtained for 1980:
split(cl_object_names(GVME[["1980"]]), cl_class_ids(GVME[["1980"]]))
## Margins:
x <- cl_margin(GVME[["1980"]])
## Add names, and sort:
names(x) <- cl_object_names(GVME[["1980"]])
sort(x)
## Note the "uncertainty" of assigning Egypt to the "intermediate" class
## of nations.

cl_medoid Medoid Partitions and Hierarchies

Description

Compute the medoid of an ensemble of partitions or hierarchies, i.e., the element of the ensemble
minimizing the sum of dissimilarities to all other elements.

Usage

cl_medoid(x, method = "euclidean")

Arguments

x an ensemble of partitions or hierarchies, or something coercible to that (see
cl_ensemble).

method a character string or a function, as for argument method of function cl_dissimilarity.

Details

Medoid clusterings are special cases of “consensus” clusterings characterized as the solutions of an
optimization problem. See Gordon (2001) for more information.

The dissimilarities d for determining the medoid are obtained by calling cl_dissimilarity with
arguments x and method. The medoid can then be found as the (first) row index for which the row
sum of as.matrix(d) is minimal. Modulo possible differences in the case of ties, this gives the
same results as (the medoid obtained by) pam in package cluster.

Value

The medoid partition or hierarchy.
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References

A. D. Gordon (1999). Classification (2nd edition). Boca Raton, FL: Chapman & Hall/CRC.

See Also

cl_consensus

Examples

## An ensemble of partitions.
data("CKME")
pens <- CKME[1 : 20]
m1 <- cl_medoid(pens)
diss <- cl_dissimilarity(pens)
require("cluster")
m2 <- pens[[pam(diss, 1)$medoids]]
## Agreement of medoid consensus partitions.
cl_agreement(m1, m2)
## Or, more straightforwardly:
table(cl_class_ids(m1), cl_class_ids(m2))

cl_membership Memberships of Partitions

Description

Compute the memberships values for objects representing partitions.

Usage

cl_membership(x, k = n_of_classes(x))
as.cl_membership(x)

Arguments

x an R object representing a partition of objects (for cl_membership) or raw mem-
berships or class ids (for as.cl_membership).

k an integer giving the number of columns (corresponding to class ids) to be used
in the membership matrix. Must not be less, and default to, the number of classes
in the partition.

Details

cl_membership is a generic function.

The methods provided in package clue handle the partitions obtained from clustering functions in
the base R distribution, as well as packages RWeka, cba, cclust, cluster, e1071, flexclust, flexmix,
kernlab, mclust, movMF and skmeans (and of course, clue itself).

as.cl_membership can be used for coercing “raw” class ids (given as atomic vectors) or member-
ship values (given as numeric matrices) to membership objects.
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Value

An object of class "cl_membership" with the matrix of membership values.

See Also

is.cl_partition

Examples

## Getting the memberships of a single soft partition.
d <- dist(USArrests)
hclust_methods <-

c("ward", "single", "complete", "average", "mcquitty")
hclust_results <- lapply(hclust_methods, function(m) hclust(d, m))
names(hclust_results) <- hclust_methods
## Now create an ensemble from the results.
hens <- cl_ensemble(list = hclust_results)
## And add the results of agnes and diana.
require("cluster")
hens <- c(hens, list(agnes = agnes(d), diana = diana(d)))
## Create a dissimilarity object from this.
d1 <- cl_dissimilarity(hens)
## And compute a soft partition.
party <- fanny(d1, 2)
round(cl_membership(party), 5)
## The "nearest" hard partition to this:
as.cl_hard_partition(party)
## (which has the same class ids as cl_class_ids(party)).

## Extracting the memberships from the elements of an ensemble of
## partitions.
pens <- cl_boot(USArrests, 30, 3)
pens
mems <- lapply(pens, cl_membership)
## And turning these raw memberships into an ensemble of partitions.
pens <- cl_ensemble(list = lapply(mems, as.cl_partition))
pens
pens[[length(pens)]]

cl_object_names Find Object Names

Description

Find the names of the objects from which a taxonomy (partition or hierarchy) or proximity was
obtained.

Usage

cl_object_names(x)
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Arguments

x an R object representing a taxonomy or proximity.

Details

This is a generic function.

The methods provided in package clue handle the partitions and hierarchies obtained from clus-
tering functions in the base R distribution, as well as packages RWeka, ape, cba, cclust, cluster,
e1071, flexclust, flexmix, kernlab, mclust, movMF and skmeans (and of course, clue itself), in
as much as possible.

There is also a method for object dissimilarities which inherit from class "dist".

Value

A character vector of length n_of_objects(x) in case the names of the objects could be deter-
mined, or NULL.

cl_pam K-Medoids Partitions of Clusterings

Description

Compute k-medoids partitions of clusterings.

Usage

cl_pam(x, k, method = "euclidean", solver = c("pam", "kmedoids"))

Arguments

x an ensemble of partitions or hierarchies, or something coercible to that (see
cl_ensemble).

k an integer giving the number of classes to be used in the partition.
method a character string or a function, as for argument method of function cl_dissimilarity.
solver a character string indicating the k-medoids solver to be employed. May be ab-

breviated. If "pam" (default), the Partitioning Around Medoids (Kaufman &
Rousseeuw (1990), Chapter 2) heuristic pam of package cluster is used. Other-
wise, the exact algorithm of kmedoids is employed.

Details

An optimal k-medoids partition of the given cluster ensemble is defined as a partition of the objects
xi (the elements of the ensemble) into k classes C1, . . . , Ck such that the criterion function L =∑k

l=1 minj∈Cl

∑
i∈Cl

d(xi, xj) is minimized.

Such secondary partitions (e.g., Gordon & Vichi, 1998) are obtained by computing the dissimilari-
ties d of the objects in the ensemble for the given dissimilarity method, and applying a dissimilarity-
based k-medoids solver to d.
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Value

An object of class "cl_pam" representing the obtained “secondary” partition, which is a list with
the following components.

cluster the class ids of the partition.

medoid_ids the indices of the medoids.

prototypes a cluster ensemble with the k prototypes (medoids).

criterion the value of the criterion function of the partition.

description a character string indicating the dissimilarity method employed.

References

L. Kaufman and P. J. Rousseeuw (1990). Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York.

A. D. Gordon and M. Vichi (1998). Partitions of partitions. Journal of Classification, 15, 265–285.
doi:10.1007/s003579900034.

See Also

cl_pclust for more general prototype-based partitions of clusterings.

Examples

data("Kinship82")
party <- cl_pam(Kinship82, 3, "symdiff")
## Compare results with tables 5 and 6 in Gordon & Vichi (1998).
party
lapply(cl_prototypes(party), cl_classes)
table(cl_class_ids(party))

cl_pclust Prototype-Based Partitions of Clusterings

Description

Compute prototype-based partitions of a cluster ensemble by minimizing
∑

wbu
m
bjd(xb, pj)

e, the
sum of the case-weighted and membership-weighted e-th powers of the dissimilarities between the
elements xb of the ensemble and the prototypes pj , for suitable dissimilarities d and exponents e.

Usage

cl_pclust(x, k, method = NULL, m = 1, weights = 1,
control = list())

https://doi.org/10.1007/s003579900034
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Arguments

x an ensemble of partitions or hierarchies, or something coercible to that (see
cl_ensemble).

k an integer giving the number of classes to be used in the partition.

method the consensus method to be employed, see cl_consensus.

m a number not less than 1 controlling the softness of the partition (as the “fuzzi-
fication parameter” of the fuzzy c-means algorithm). The default value of 1
corresponds to hard partitions obtained from a generalized k-means problem;
values greater than one give partitions of increasing softness obtained from a
generalized fuzzy c-means problem.

weights a numeric vector of non-negative case weights. Recycled to the number of ele-
ments in the ensemble given by x if necessary.

control a list of control parameters. See Details.

Details

Partitioning is performed using pclust via a family constructed from method. The dissimilarities
d and exponent e are implied by the consensus method employed, and inferred via a registration
mechanism currently only made available to built-in consensus methods. The default methods
compute Least Squares Euclidean consensus clusterings, i.e., use Euclidean dissimilarity d and
e = 2.

For m = 1, the partitioning procedure was introduced by Gaul and Schader (1988) for “Clusterwise
Aggregation of Relations” (with the same domains), containing equivalence relations, i.e., hard
partitions, as a special case.

Available control parameters are as for pclust.

The fixed point approach employed is a heuristic which cannot be guaranteed to find the global
minimum (as this is already true for the computation of consensus clusterings). Standard practice
would recommend to use the best solution found in “sufficiently many” replications of the base
algorithm.

Value

An object of class "cl_partition" representing the obtained “secondary” partition by an object
of class "cl_pclust", which is a list containing at least the following components.

prototypes a cluster ensemble with the k prototypes.

membership an object of class "cl_membership" with the membership values ubj .

cluster the class ids of the nearest hard partition.

silhouette Silhouette information for the partition, see silhouette.

validity precomputed validity measures for the partition.

m the softness control argument.

call the matched call.

d the dissimilarity function d = d(x, p) employed.

e the exponent e employed.
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References

J. C. Bezdek (1981). Pattern recognition with fuzzy objective function algorithms. New York:
Plenum.

W. Gaul and M. Schader (1988). Clusterwise aggregation of relations. Applied Stochastic Models
and Data Analysis, 4:273–282. doi:10.1002/asm.3150040406.

Examples

## Use a precomputed ensemble of 50 k-means partitions of the
## Cassini data.
data("CKME")
CKME <- CKME[1 : 30] # for saving precious time ...
diss <- cl_dissimilarity(CKME)
hc <- hclust(diss)
plot(hc)
## This suggests using a partition with three classes, which can be
## obtained using cutree(hc, 3). Could use cl_consensus() to compute
## prototypes as the least squares consensus clusterings of the classes,
## or alternatively:
set.seed(123)
x1 <- cl_pclust(CKME, 3, m = 1)
x2 <- cl_pclust(CKME, 3, m = 2)
## Agreement of solutions.
cl_dissimilarity(x1, x2)
table(cl_class_ids(x1), cl_class_ids(x2))

cl_predict Predict Memberships

Description

Predict class ids or memberships from R objects representing partitions.

Usage

cl_predict(object, newdata = NULL,
type = c("class_ids", "memberships"), ...)

Arguments

object an R object representing a partition of objects.

newdata an optional data set giving the objects to make predictions for. This must be of
the same “kind” as the data set employed for obtaining the partition. If omitted,
the original data are used.

type a character string indicating whether class ids or memberships should be re-
turned. May be abbreviated.

... arguments to be passed to and from methods.

https://doi.org/10.1002/asm.3150040406
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Details

Many algorithms resulting in partitions of a given set of objects can be taken to induce a partition
of the underlying feature space for the measurements on the objects, so that class memberships for
“new” objects can be obtained from the induced partition. Examples include partitions based on
assigning objects to their “closest” prototypes, or providing mixture models for the distribution of
objects in feature space.

This is a generic function. The methods provided in package clue handle the partitions obtained
from clustering functions in the base R distribution, as well as packages RWeka, cba, cclust, clus-
ter, e1071, flexclust, flexmix, kernlab, mclust, movMF and skmeans (and of course, clue itself).

Value

Depending on type, an object of class "cl_class_ids" with the predicted class ids, or of class
"cl_membership" with the matrix of predicted membership values.

Examples

## Run kmeans on a random subset of the Cassini data, and predict the
## memberships for the "test" data set.
data("Cassini")
nr <- NROW(Cassini$x)
ind <- sample(nr, 0.9 * nr, replace = FALSE)
party <- kmeans(Cassini$x[ind, ], 3)
table(cl_predict(party, Cassini$x[-ind, ]),

Cassini$classes[-ind])

cl_prototypes Partition Prototypes

Description

Determine prototypes for the classes of an R object representing a partition.

Usage

cl_prototypes(x)

Arguments

x an R object representing a partition of objects.

Details

Many partitioning methods are based on prototypes (“centers”, “centroids”, “medoids”, . . . ). In
typical cases, these are points in the feature space for the measurements on the objects to be par-
titioned, such that one can quantify the distance between the objects and the prototypes, and, e.g.,
classify objects to their closest prototype.
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This is a generic function. The methods provided in package clue handle the partitions obtained
from clustering functions in the base R distribution, as well as packages cba, cclust, cluster, e1071,
flexclust, kernlab, and mclust (and of course, clue itself).

Examples

## Show how prototypes ("centers") vary across k-means runs on
## bootstrap samples from the Cassini data.
data("Cassini")
nr <- NROW(Cassini$x)
out <- replicate(50,

{ kmeans(Cassini$x[sample(nr, replace = TRUE), ], 3) },
simplify = FALSE)

## Plot the data points in light gray, and the prototypes found.
plot(Cassini$x, col = gray(0.8))
points(do.call("rbind", lapply(out, cl_prototypes)), pch = 19)

cl_tabulate Tabulate Vector Objects

Description

Tabulate the unique values in vector objects.

Usage

cl_tabulate(x)

Arguments

x a vector.

Value

A data frame with components:

values the unique values.

counts an integer vector with the number of times each of the unique values occurs in
x.

Examples

data("Kinship82")
tab <- cl_tabulate(Kinship82)
## The counts:
tab$counts
## The most frequent partition:
tab$values[[which.max(tab$counts)]]
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cl_ultrametric Ultrametrics of Hierarchies

Description

Compute the ultrametric distances for objects representing (total indexed) hierarchies.

Usage

cl_ultrametric(x, size = NULL, labels = NULL)
as.cl_ultrametric(x)

Arguments

x an R object representing a (total indexed) hierarchy of objects.

size an integer giving the number of objects in the hierarchy.

labels a character vector giving the names of the objects in the hierarchy.

Details

If x is not an ultrametric or a hierarchy with an ultrametric representation, cl_ultrametric uses
cophenetic to obtain the ultrametric (also known as cophenetic) distances from the hierarchy,
which in turn by default calls the S3 generic as.hclust on the hierarchy. Support for a class which
represents hierarchies can thus be added by providing as.hclust methods for this class. In R 2.1.0
or better, cophenetic is an S3 generic as well, and one can also more directly provide methods for
this if necessary.

as.cl_ultrametric is a generic function which can be used for coercing raw (non-classed) ultra-
metrics, represented as numeric vectors (of the lower-half entries) or numeric matrices, to ultramet-
ric objects.

Ultrametric objects are implemented as symmetric proximity objects with a dissimilarity inter-
pretation so that self-proximities are zero, and inherit from classes "cl_dissimilarity" and
"cl_proximity". See section Details in the documentation for cl_dissimilarity for implica-
tions.

Ultrametric objects can also be coerced to classes "dendrogram" and "hclust", and hence in
particular use the plot methods for these classes. By default, plotting an ultrametric object uses the
plot method for dendrograms.

Value

An object of class "cl_ultrametric" containing the ultrametric distances.

See Also

is.cl_hierarchy
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Examples

hc <- hclust(dist(USArrests))
u <- cl_ultrametric(hc)
## Subscripting.
u[1 : 5, 1 : 5]
u[1 : 5, 6 : 7]
## Plotting.
plot(u)

cl_validity Validity Measures for Partitions and Hierarchies

Description

Compute validity measures for partitions and hierarchies, attempting to measure how well these
clusterings capture the underlying structure in the data they were obtained from.

Usage

cl_validity(x, ...)
## Default S3 method:
cl_validity(x, d, ...)

Arguments

x an object representing a partition or hierarchy.

d a dissimilarity object from which x was obtained.

... arguments to be passed to or from methods.

Details

cl_validity is a generic function.

For partitions, its default method gives the “dissimilarity accounted for”, defined as 1 − aw/at,
where at is the average total dissimilarity, and the “average within dissimilarity” aw is given by∑

i,j

∑
k mikmjkdij∑

i,j

∑
k mikmjk

where d and m are the dissimilarities and memberships, respectively, and the sums are over all pairs
of objects and all classes.

For hierarchies, the validity measures computed by default are “variance accounted for” (VAF, e.g.,
Hubert, Arabie & Meulman, 2006) and “deviance accounted for” (DEV, e.g., Smith, 2001). If u is
the ultrametric corresponding to the hierarchy x and d the dissimilarity x was obtained from, these
validity measures are given by

VAF = max

(
0, 1−

∑
i,j(dij − uij)

2∑
i,j(dij −mean(d))2

)
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and

DEV = max

(
0, 1−

∑
i,j |dij − uij |∑

i,j |dij −median(d)|

)
respectively. Note that VAF and DEV are not invariant under rescaling u, and may be “arbitrarily
small” (i.e., 0 using the above definitions) even though u and d are “structurally close” in some
sense.

For the results of using agnes and diana, the agglomerative and divisive coefficients are provided
in addition to the default ones.

Value

A list of class "cl_validity" with the computed validity measures.

References

L. Hubert, P. Arabie and J. Meulman (2006). The structural representation of proximity matrices
with MATLAB. Philadelphia, PA: SIAM.

T. J. Smith (2001). Constructing ultrametric and additive trees based on the L1 norm. Journal of
Classification, 18/2, 185–207. https://link.springer.com/article/10.1007/s00357-001-0015-0.

See Also

cluster.stats in package fpc for a variety of cluster validation statistics; fclustIndex in package
e1071 for several fuzzy cluster indexes; clustIndex in package cclust; silhouette in package
cluster.

fit_ultrametric_target

Fit Dissimilarities to a Hierarchy

Description

Find the ultrametric from a target equivalence class of hierarchies which minimizes weighted Eu-
clidean or Manhattan dissimilarity to a given dissimilarity object.

Usage

ls_fit_ultrametric_target(x, y, weights = 1)
l1_fit_ultrametric_target(x, y, weights = 1)

Arguments

x a dissimilarity object inheriting from class "dist".

y a target hierarchy.

weights a numeric vector or matrix with non-negative weights for obtaining a weighted
fit. If a matrix, its numbers of rows and columns must be the same as the number
of objects in x. Otherwise, it is recycled to the number of elements in x.

https://link.springer.com/article/10.1007/s00357-001-0015-0
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Details

The target equivalence class consists of all dendrograms for which the corresponding n-trees are
the same as the one corresponding to y. I.e., all splits are the same as for y, and optimization is over
the height of the splits.

The criterion function to be optimized over all ultrametrics from the equivalence class is
∑

wij |xij−
uij |p, where p = 2 in the Euclidean and p = 1 in the Manhattan case, respectively.

The optimum can be computed as follows. Suppose split s joins object classes A and B. As
the ultrametric dissimilarities of all objects in A to all objects in B must be the same value, say,
uA,B = us, the contribution from the split to the criterion function is of the form fs(us) =∑

i∈A,j∈B wij |xij − us|p. We need to minimize
∑

s fs(us) under the constraint that the us form
a non-decreasing sequence, which is accomplished by using the Pool Adjacent Violator Algorithm
(PAVA) using the weighted mean (p = 2) or weighted median (p = 1) for solving the blockwise
optimization problems.

Value

An object of class "cl_ultrametric" containing the optimal ultrametric distances.

See Also

ls_fit_ultrametric for finding the ultrametric minimizing Euclidean dissimilarity (without fix-
ing the splits).

Examples

data("Phonemes")
## Note that the Phonemes data set has the consonant misclassification
## probabilities, i.e., the similarities between the phonemes.
d <- as.dist(1 - Phonemes)
## Find the maximal dominated and miminal dominating ultrametrics by
## hclust() with single and complete linkage:
y1 <- hclust(d, "single")
y2 <- hclust(d, "complete")
## Note that these are quite different:
cl_dissimilarity(y1, y2, "gamma")
## Now find the L2 optimal members of the respective dendrogram
## equivalence classes.
u1 <- ls_fit_ultrametric_target(d, y1)
u2 <- ls_fit_ultrametric_target(d, y2)
## Compute the L2 optimal ultrametric approximation to d.
u <- ls_fit_ultrametric(d)
## And compare ...
cl_dissimilarity(cl_ensemble(Opt = u, Single = u1, Complete = u2), d)
## The solution obtained via complete linkage is quite close:
cl_agreement(u2, u, "cophenetic")
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GVME Gordon-Vichi Macroeconomic Partition Ensemble Data

Description

Soft partitions of 21 countries based on macroeconomic data for the years 1975, 1980, 1985, 1990,
and 1995.

Usage

data("GVME")

Format

A named cluster ensemble of 5 soft partitions of 21 countries into 2 or 3 classes. The names are the
years to which the partitions correspond.

Details

The partitions were obtained using fuzzy c-means on measurements of the following variables: the
annual per capita gross domestic product (GDP) in USD (converted to 1987 prices); the percentage
of GDP provided by agriculture; the percentage of employees who worked in agriculture; and gross
domestic investment, expressed as a percentage of the GDP. See Gordon and Vichi (2001), page
230, for more details.

Source

Table 1 in Gordon and Vichi (2001).

References

A. D. Gordon and M. Vichi (2001). Fuzzy partition models for fitting a set of partitions. Psychome-
trika, 66, 229–248. doi:10.1007/BF02294837.

GVME_Consensus Gordon-Vichi Macroeconomic Consensus Partition Data

Description

The soft (“fuzzy”) consensus partitions for the macroeconomic partition data given in Gordon and
Vichi (2001).

Usage

data("GVME_Consensus")

https://doi.org/10.1007/BF02294837
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Format

A named cluster ensemble of eight soft partitions of 21 countries terms into two or three classes.

Details

The elements of the ensemble are consensus partitions for the macroeconomic partition data in
Gordon and Vichi (2001), which are available as data set GVME. Element names are of the form
"m/k", where m indicates the consensus method employed (one of ‘MF1’, ‘MF2’, ‘JMF’, and ‘S&S’,
corresponding to the application of models 1, 2, and 3 in Gordon and Vichi (2001) and the approach
in Sato and Sato (1994), respectively), and k denotes the number classes (2 or 3).

Source

Tables 4 and 5 in Gordon and Vichi (2001).

References

A. D. Gordon and M. Vichi (2001). Fuzzy partition models for fitting a set of partitions. Psychome-
trika, 66, 229–248. doi:10.1007/BF02294837.

M. Sato and Y. Sato (1994). On a multicriteria fuzzy clustering method for 3-way data. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2, 127–142.
doi:10.1142/S0218488594000122.

Examples

## Load the consensus partitions.
data("GVME_Consensus")
## Pick the partitions into 2 classes.
GVME_Consensus_2 <- GVME_Consensus[1 : 4]
## Fuzziness using the Partition Coefficient.
cl_fuzziness(GVME_Consensus_2)
## (Corresponds to 1 - F in the source.)
## Dissimilarities:
cl_dissimilarity(GVME_Consensus_2)
cl_dissimilarity(GVME_Consensus_2, method = "comem")

hierarchy Hierarchies

Description

Determine whether an R object represents a hierarchy of objects, or coerce to an R object represent-
ing such.

https://doi.org/10.1007/BF02294837
https://doi.org/10.1142/S0218488594000122
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Usage

is.cl_hierarchy(x)
is.cl_dendrogram(x)

as.cl_hierarchy(x)
as.cl_dendrogram(x)

Arguments

x an R object.

Details

These functions are generic functions.

The methods provided in package clue handle the partitions and hierarchies obtained from clus-
tering functions in the base R distribution, as well as packages RWeka, ape, cba, cclust, cluster,
e1071, flexclust, flexmix, kernlab, mclust, movMF and skmeans (and of course, clue itself).

The hierarchies considered by clue are n-trees (hierarchies in the strict sense) and dendrograms
(also known as valued n-trees or total indexed hierarchies), which are represented by the virtual
classes "cl_hierarchy" and "cl_dendrogram" (which inherits from the former), respectively.

n-trees on a set X of objects correspond to collections H of subsets of X , usually called classes of
the hierarchy, which satisfy the following properties:

• H contains all singletons with objects of X , X itself, but not the empty set;

• The intersection of two sets A and B in H is either empty or one of the sets.

The classes of a hierarchy can be obtained by cl_classes.

Dendrograms are n-trees where additionally a height h is associated with each of the classes, so
that for two classes A and B with non-empty intersection we have h(A) ≤ h(B) iff A is a subset
of B. For each pair of objects one can then define uij as the height of the smallest class containing
both i and j: this results in a dissimilarity on X which satisfies the ultrametric (3-point) conditions
uij ≤ max(uik, ujk) for all triples (i, j, k) of objects. Conversely, an ultrametric dissimilarity
induces a unique dendrogram.

The ultrametric dissimilarities of a dendrogram can be obtained by cl_ultrametric.

as.cl_hierarchy returns an object of class "cl_hierarchy" “containing” the given object x if
this already represents a hierarchy (i.e., is.cl_hierarchy(x) is true), or the ultrametric obtained
from x via as.cl_ultrametric.

as.cl_dendrogram returns an object which has class "cl_dendrogram" and inherits from "cl_hierarchy",
and contains x if it represents a dendrogram (i.e., is.cl_dendrogram(x) is true), or the ultrametric
obtained from x.

Conceptually, hierarchies and dendrograms are virtual classes, allowing for a variety of representa-
tions.

There are group methods for comparing dendrograms and computing their minimum, maximum,
and range based on the meet and join operations, see cl_meet. There is also a plot method.
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Value

For the testing functions, a logical indicating whether the given object represents a clustering of
objects of the respective kind.

For the coercion functions, a container object inheriting from "cl_hierarchy", with a suitable
representation of the hierarchy given by x.

Examples

hcl <- hclust(dist(USArrests))
is.cl_dendrogram(hcl)
is.cl_hierarchy(hcl)

Kinship82 Rosenberg-Kim Kinship Terms Partition Data

Description

Partitions of 15 kinship terms given by 85 female undergraduates at Rutgers University who were
asked to sort the terms into classes “on the basis of some aspect of meaning”.

Usage

data("Kinship82")

Format

A cluster ensemble of 85 hard partitions of the 15 kinship terms.

Details

Rosenberg and Kim (1975) describe an experiment where perceived similarities of the kinship terms
were obtained from six different “sorting” experiments. These “original” Rosenberg-Kim kinship
terms data were published in Arabie, Carroll and de Sarbo (1987), and are also contained in file
‘indclus.data’ in the shell archive https://netlib.org/mds/indclus.shar.

For one of the experiments, partitions of the terms were printed in Rosenberg (1982). Comparison
with the original data indicates that the partition data have the “nephew” and “niece” columns
interchanged, which is corrected in the data set at hand.

Source

Table 7.1 in Rosenberg (1982), with the “nephew” and “niece” columns interchanged.

https://netlib.org/mds/indclus.shar
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References

P. Arabie, J. D. Carroll and W. S. de Sarbo (1987). Three-way scaling and clustering. Newbury
Park, CA: Sage.

S. Rosenberg and M. P. Kim (1975). The method of sorting as a data-gathering procedure in multi-
variate research. Multivariate Behavioral Research, 10, 489–502.
doi:10.1207/s15327906mbr1004_7.

S. Rosenberg (1982). The method of sorting in multivariate research with applications selected
from cognitive psychology and person perception. In N. Hirschberg and L. G. Humphreys (eds.),
Multivariate Applications in the Social Sciences, 117–142. Hillsdale, NJ: Erlbaum.

Kinship82_Consensus Gordon-Vichi Kinship82 Consensus Partition Data

Description

The soft (“fuzzy”) consensus partitions for the Rosenberg-Kim kinship terms partition data given
in Gordon and Vichi (2001).

Usage

data("Kinship82_Consensus")

Format

A named cluster ensemble of three soft partitions of the 15 kinship terms into three classes.

Details

The elements of the ensemble are named "MF1", "MF2", and "JMF", and correspond to the consensus
partitions obtained by applying models 1, 2, and 3 in Gordon and Vichi (2001) to the kinship terms
partition data in Rosenberg (1982), which are available as data set Kinship82.

Source

Table 6 in Gordon and Vichi (2001).

References

A. D. Gordon and M. Vichi (2001). Fuzzy partition models for fitting a set of partitions. Psychome-
trika, 66, 229–248. doi:10.1007/BF02294837.

S. Rosenberg (1982). The method of sorting in multivariate research with applications selected
from cognitive psychology and person perception. In N. Hirschberg and L. G. Humphreys (eds.),
Multivariate Applications in the Social Sciences, 117–142. Hillsdale, NJ: Erlbaum.

https://doi.org/10.1207/s15327906mbr1004_7
https://doi.org/10.1007/BF02294837
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Examples

## Load the consensus partitions.
data("Kinship82_Consensus")
## Fuzziness using the Partition Coefficient.
cl_fuzziness(Kinship82_Consensus)
## (Corresponds to 1 - F in the source.)
## Dissimilarities:
cl_dissimilarity(Kinship82_Consensus)
cl_dissimilarity(Kinship82_Consensus, method = "comem")

kmedoids K-Medoids Clustering

Description

Compute a k-medoids partition of a dissimilarity object.

Usage

kmedoids(x, k)

Arguments

x a dissimilarity object inheriting from class "dist", or a square matrix of pair-
wise object-to-object dissimilarity values.

k an integer giving the number of classes to be used in the partition.

Details

Let d denote the pairwise object-to-object dissimilarity matrix corresponding to x. A k-medoids
partition of x is defined as a partition of the numbers from 1 to n, the number of objects in x, into k
classes C1, . . . , Ck such that the criterion function L =

∑
l minj∈Cl

∑
i∈Cl

dij is minimized.

This is an NP-hard optimization problem. PAM (Partitioning Around Medoids, see Kaufman &
Rousseeuw (1990), Chapter 2) is a very popular heuristic for obtaining optimal k-medoids parti-
tions, and provided by pam in package cluster.

kmedoids is an exact algorithm based on a binary linear programming formulation of the opti-
mization problem (e.g., Gordon & Vichi (1998), [P4’]), using lp from package lpSolve as solver.
Depending on available hardware resources (the number of constraints of the program is of the
order n2), it may not be possible to obtain a solution.

Value

An object of class "kmedoids" representing the obtained partition, which is a list with the following
components.

cluster the class ids of the partition.
medoid_ids the indices of the medoids.
criterion the value of the criterion function of the partition.
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References

L. Kaufman and P. J. Rousseeuw (1990). Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York.

A. D. Gordon and M. Vichi (1998). Partitions of partitions. Journal of Classification, 15, 265–285.
doi:10.1007/s003579900034.

l1_fit_ultrametric Least Absolute Deviation Fit of Ultrametrics to Dissimilarities

Description

Find the ultrametric with minimal absolute distance (Manhattan dissimilarity) to a given dissimilar-
ity object.

Usage

l1_fit_ultrametric(x, method = c("SUMT", "IRIP"), weights = 1,
control = list())

Arguments

x a dissimilarity object inheriting from or coercible to class "dist".

method a character string indicating the fitting method to be employed. Must be one of
"SUMT" (default) or "IRIP", or a unique abbreviation thereof.

weights a numeric vector or matrix with non-negative weights for obtaining a weighted
least squares fit. If a matrix, its numbers of rows and columns must be the same
as the number of objects in x, and the lower diagonal part is used. Otherwise, it
is recycled to the number of elements in x.

control a list of control parameters. See Details.

Details

The problem to be solved is minimizing

L(u) =
∑
i,j

wij |xij − uij |

over all u satisfying the ultrametric constraints (i.e., for all i, j, k, uij ≤ max(uik, ujk)). This
problem is known to be NP hard (Krivanek and Moravek, 1986).

We provide two heuristics for solving this problem.

Method "SUMT" implements a SUMT (Sequential Unconstrained Minimization Technique, see sumt)
approach using the sign function for the gradients of the absolute value function.

Available control parameters are method, control, eps, q, and verbose, which have the same roles
as for sumt, and the following.

https://doi.org/10.1007/s003579900034
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nruns an integer giving the number of runs to be performed. Defaults to 1.

start a single dissimilarity, or a list of dissimilarities to be employed as starting values.

Method "IRIP" implements a variant of the Iteratively Reweighted Iterative Projection approach of
Smith (2001), which attempts to solve the L1 problem via a sequence of weighted L2 problems,
determining u(t+ 1) by minimizing the criterion function∑

i,j

wij(xij − uij)
2/max(|xij − uij(t)|,m)

with m a “small” non-zero value to avoid zero divisors. We use the SUMT method of ls_fit_ultrametric
for solving the weighted least squares problems.

Available control parameters are as follows.

maxiter an integer giving the maximal number of iteration steps to be performed. Defaults to 100.

eps a nonnegative number controlling the iteration, which stops when the maximal change in u is
less than eps. Defaults to 10−6.

reltol the relative convergence tolerance. Iteration stops when the relative change in the L1 cri-
terion is less than reltol. Defaults to 10−6.

MIN the cutoff m. Defaults to 10−3.

start a dissimilarity object to be used as the starting value for u.

control a list of control parameters to be used by the method of ls_fit_ultrametric employed
for solving the weighted L2 problems.

One may need to adjust the default control parameters to achieve convergence.

It should be noted that all methods are heuristics which can not be guaranteed to find the global
minimum.

Value

An object of class "cl_ultrametric" containing the fitted ultrametric distances.

References

M. Krivanek and J. Moravek (1986). NP-hard problems in hierarchical tree clustering. Acta Infor-
matica, 23, 311–323. doi:10.1007/BF00289116.

T. J. Smith (2001). Constructing ultrametric and additive trees based on the L1 norm. Journal of
Classification, 18, 185–207. https://link.springer.com/article/10.1007/s00357-001-0015-0.

See Also

cl_consensus for computing least absolute deviation (Manhattan) consensus hierarchies; ls_fit_ultrametric.

https://doi.org/10.1007/BF00289116
https://link.springer.com/article/10.1007/s00357-001-0015-0
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lattice Cluster Lattices

Description

Computations on the lattice of all (hard) partitions, or the lattice of all dendrograms, or the meet
semilattice of all hierarchies (n-trees) of/on a set of objects: meet, join, and comparisons.

Usage

cl_meet(x, y)
cl_join(x, y)

Arguments

x an ensemble of partitions or dendrograms or hierarchies, or an R object repre-
senting a partition or dendrogram or hierarchy.

y an R object representing a partition or dendrogram or hierarchy. Ignored if x is
an ensemble.

Details

For a given finite set of objects X , the set H(X) of all (hard) partitions of X can be partially ordered
by defining a partition P to be “finer” than a partition Q, i.e., P ≤ Q, if each class of P is contained
in some class of Q. With this partial order, H(X) becomes a bounded lattice, with intersection and
union of two elements given by their greatest lower bound (meet) and their least upper bound (join),
respectively.

Specifically, the meet of two partitions computed by cl_meet is the partition obtained by intersect-
ing the classes of the partitions; the classes of the join computed by cl_join are obtained by joining
all elements in the same class in at least one of the partitions. Obviously, the least and greatest el-
ements of the partition lattice are the partitions where each object is in a single class (sometimes
referred to as the “splitter” partition) or in the same class (the “lumper” partition), respectively.
Meet and join of an arbitrary number of partitions can be defined recursively.

In addition to computing the meet and join, the comparison operations corresponding to the above
partial order as well as min, max, and range are available at least for R objects representing parti-
tions inheriting from "cl_partition". The summary methods give the meet and join of the given
partitions (for min and max), or a partition ensemble with the meet and join (for range).

If the partitions specified by x and y are soft partitions, the corresponding nearest hard partitions
are used. Future versions may optionally provide suitable “soft” (fuzzy) extensions for computing
meets and joins.

The set of all dendrograms on X can be ordered using pointwise inequality of the associated ultra-
metric dissimilarities: i.e., if D and E are the dendrograms with ultrametrics u and v, respectively,
then D ≤ E if uij ≤ vij for all pairs (i, j) of objects. This again yields a lattice (of dendrograms).
The join of D and E is the dendrogram with ultrametrics given by max(uij , vij) (as this gives an
ultrametric); the meet is the dendrogram with the maximal ultrametric dominated by min(uij , vij),
and can be obtained by applying single linkage hierarchical clustering to the minima.
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The set of all hierarchies on X can be ordered by set-wise inclusion of the classes: i.e., if H and
G are two hierarchies, then H ≤ G if all classes of H are also classes of G. This yields a meet
semilattice, with meet given by the classes contained in both hierarchies. The join only exists if the
union of the classes is a hierarchy.

In each case, a modular semilattice is obtained, which allows for a natural metrization via least el-
ement (semi)lattice move distances, see Barthélémy, Leclerc and Monjardet (1981). These latticial
metrics are given by the BA/C (partitions), Manhattan (dendrograms), and symdiff (hierarchies)
dissimilarities, respectively (see cl_dissimilarity).

Value

For cl_meet and cl_join, an object of class "cl_partition" or "cl_dendrogram" with the class
ids or ultrametric dissimilarities of the meet and join of the partitions or dendrograms, respectively.

References

J.-P. Barthélémy, B. Leclerc and B. Monjardet (1981). On the use of ordered sets in problems of
comparison and consensus of classification. Journal of Classification, 3, 187–224. doi:10.1007/
BF01894188.

Examples

## Two simple partitions of 7 objects.
A <- as.cl_partition(c(1, 1, 2, 3, 3, 5, 5))
B <- as.cl_partition(c(1, 2, 2, 3, 4, 5, 5))
## These disagree on objects 1-3, A splits objects 4 and 5 into
## separate classes. Objects 6 and 7 are always in the same class.
(A <= B) || (B <= A)
## (Neither partition is finer than the other.)
cl_meet(A, B)
cl_join(A, B)
## Meeting with the lumper (greatest) or joining with the splitter
## (least) partition does not make a difference:
C_lumper <- as.cl_partition(rep(1, n_of_objects(A)))
cl_meet(cl_ensemble(A, B, C_lumper))
C_splitter <- as.cl_partition(seq_len(n_of_objects(A)))
cl_join(cl_ensemble(A, B, C_splitter))
## Another way of computing the join:
range(A, B, C_splitter)$max

ls_fit_addtree Least Squares Fit of Additive Tree Distances to Dissimilarities

Description

Find the additive tree distance or centroid distance minimizing least squares distance (Euclidean
dissimilarity) to a given dissimilarity object.

https://doi.org/10.1007/BF01894188
https://doi.org/10.1007/BF01894188
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Usage

ls_fit_addtree(x, method = c("SUMT", "IP", "IR"), weights = 1,
control = list())

ls_fit_centroid(x)

Arguments

x a dissimilarity object inheriting from class "dist".

method a character string indicating the fitting method to be employed. Must be one of
"SUMT" (default), "IP", or "IR", or a unique abbreviation thereof.

weights a numeric vector or matrix with non-negative weights for obtaining a weighted
least squares fit. If a matrix, its numbers of rows and columns must be the same
as the number of objects in x, and the lower diagonal part is used. Otherwise, it
is recycled to the number of elements in x.

control a list of control parameters. See Details.

Details

See as.cl_addtree for details on additive tree distances and centroid distances.

With L(d) =
∑

wij(xij − dij)
2, the problem to be solved by ls_fit_addtree is minimizing L

over all additive tree distances d. This problem is known to be NP hard.

We provide three heuristics for solving this problem.

Method "SUMT" implements the SUMT (Sequential Unconstrained Minimization Technique, Fiacco
and McCormick, 1968) approach of de Soete (1983). Incomplete dissimilarities are currently not
supported.

Methods "IP" and "IR" implement the Iterative Projection and Iterative Reduction approaches of
Hubert and Arabie (1995) and Roux (1988), respectively. Non-identical weights and incomplete
dissimilarities are currently not supported.

See ls_fit_ultrametric for details on these methods and available control parameters.

It should be noted that all methods are heuristics which can not be guaranteed to find the global
minimum. Standard practice would recommend to use the best solution found in “sufficiently many”
replications of the base algorithm.

ls_fit_centroid finds the centroid distance d minimizing L(d) (currently, only for the case of
identical weights). This optimization problem has a closed-form solution.

Value

An object of class "cl_addtree" containing the optimal additive tree distances.

References

A. V. Fiacco and G. P. McCormick (1968). Nonlinear programming: Sequential unconstrained
minimization techniques. New York: John Wiley & Sons.

L. Hubert and P. Arabie (1995). Iterative projection strategies for the least squares fitting of tree
structures to proximity data. British Journal of Mathematical and Statistical Psychology, 48, 281–
317. doi:10.1111/j.20448317.1995.tb01065.x.

https://doi.org/10.1111/j.2044-8317.1995.tb01065.x
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M. Roux (1988). Techniques of approximation for building two tree structures. In C. Hayashi
and E. Diday and M. Jambu and N. Ohsumi (Eds.), Recent Developments in Clustering and Data
Analysis, pages 151–170. New York: Academic Press.

G. de Soete (1983). A least squares algorithm for fitting additive trees to proximity data. Psychome-
trika, 48, 621–626. doi:10.1007/BF02293884.

ls_fit_sum_of_ultrametrics

Least Squares Fit of Sums of Ultrametrics to Dissimilarities

Description

Find a sequence of ultrametrics with sum minimizing square distance (Euclidean dissimilarity) to a
given dissimilarity object.

Usage

ls_fit_sum_of_ultrametrics(x, nterms = 1, weights = 1,
control = list())

Arguments

x a dissimilarity object inheriting from or coercible to class "dist".

nterms an integer giving the number of ultrametrics to be fitted.

weights a numeric vector or matrix with non-negative weights for obtaining a weighted
least squares fit. If a matrix, its numbers of rows and columns must be the same
as the number of objects in x, and the lower diagonal part is used. Otherwise, it
is recycled to the number of elements in x.

control a list of control parameters. See Details.

Details

The problem to be solved is minimizing the criterion function

L(u(1), . . . , u(n)) =
∑
i,j

wij

(
xij −

n∑
k=1

uij(k)

)2

over all u(1), . . . , u(n) satisfying the ultrametric constraints.

We provide an implementation of the iterative heuristic suggested in Carroll & Pruzansky (1980)
which in each step t sequentially refits the u(k) as the least squares ultrametric fit to the “residuals”
x−

∑
l ̸=k u(l) using ls_fit_ultrametric.

Available control parameters include

maxiter an integer giving the maximal number of iteration steps to be performed. Defaults to 100.

https://doi.org/10.1007/BF02293884
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eps a nonnegative number controlling the iteration, which stops when the maximal change in all
u(k) is less than eps. Defaults to 10−6.

reltol the relative convergence tolerance. Iteration stops when the relative change in the criterion
function is less than reltol. Defaults to 10−6.

method a character string indicating the fitting method to be employed by the individual least
squares fits.

control a list of control parameters to be used by the method of ls_fit_ultrametric employed.
By default, if the SUMT method method is used, 10 inner SUMT runs are performed for each
refitting.

It should be noted that the method used is a heuristic which can not be guaranteed to find the global
minimum.

Value

A list of objects of class "cl_ultrametric" containing the fitted ultrametric distances.

References

J. D. Carroll and S. Pruzansky (1980). Discrete and hybrid scaling models. In E. D. Lantermann
and H. Feger (eds.), Similarity and Choice. Bern (Switzerland): Huber.

ls_fit_ultrametric Least Squares Fit of Ultrametrics to Dissimilarities

Description

Find the ultrametric with minimal square distance (Euclidean dissimilarity) to given dissimilarity
objects.

Usage

ls_fit_ultrametric(x, method = c("SUMT", "IP", "IR"), weights = 1,
control = list())

Arguments

x a dissimilarity object inheriting from or coercible to class "dist", or an ensem-
ble of such objects.

method a character string indicating the fitting method to be employed. Must be one of
"SUMT" (default), "IP", or "IR", or a unique abbreviation thereof.

weights a numeric vector or matrix with non-negative weights for obtaining a weighted
least squares fit. If a matrix, its numbers of rows and columns must be the same
as the number of objects in x, and the lower diagonal part is used. Otherwise, it
is recycled to the number of elements in x.

control a list of control parameters. See Details.
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Details

For a single dissimilarity object x, the problem to be solved is minimizing

L(u) =
∑
i,j

wij(xij − uij)
2

over all u satisfying the ultrametric constraints (i.e., for all i, j, k, uij ≤ max(uik, ujk)). This
problem is known to be NP hard (Krivanek and Moravek, 1986).

For an ensemble of dissimilarity objects, the criterion function is

L(u) =
∑
b

wb

∑
i,j

wij(xij(b)− uij)
2,

where wb is the weight given to element xb of the ensemble and can be specified via control param-
eter weights (default: all ones). This problem reduces to the above basic problem with x as the
wb-weighted mean of the xb.

We provide three heuristics for solving the basic problem.

Method "SUMT" implements the SUMT (Sequential Unconstrained Minimization Technique, Fiacco
and McCormick, 1968) approach of de Soete (1986) which in turn simplifies the suggestions in
Carroll and Pruzansky (1980). (See sumt for more information on the SUMT approach.) We then use
a final single linkage hierarchical clustering step to ensure that the returned object exactly satisfies
the ultrametric constraints. The starting value u0 is obtained by “random shaking” of the given
dissimilarity object (if not given). If there are missing values in x, i.e., the given dissimilarities are
incomplete, we follow a suggestion of de Soete (1984), imputing the missing values by the weighted
mean of the non-missing ones, and setting the corresponding weights to zero.

Available control parameters are method, control, eps, q, and verbose, which have the same roles
as for sumt, and the following.

nruns an integer giving the number of runs to be performed. Defaults to 1.

start a single dissimilarity, or a list of dissimilarities to be employed as starting values.

The default optimization using conjugate gradients should work reasonably well for medium to
large size problems. For “small” ones, using nlm is usually faster. Note that the number of ultra-
metric constraints is of the order n3, where n is the number of objects in the dissimilarity object,
suggesting to use the SUMT approach in favor of constrOptim.

If starting values for the SUMT are provided via start, the number of starting values gives the
number of runs to be performed, and control option nruns is ignored. Otherwise, nruns starting
values are obtained by random shaking of the dissimilarity to be fitted. In the case of multiple SUMT
runs, the (first) best solution found is returned.

Method "IP" implements the Iterative Projection approach of Hubert and Arabie (1995). This itera-
tively projects the current dissimilarities to the closed convex set given by the ultrametric constraints
(3-point conditions) for a single index triple (i, j, k), in fact replacing the two largest values among
dij , dik, djk by their mean. The following control parameters can be provided via the control
argument.

nruns an integer giving the number of runs to be performed. Defaults to 1.
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order a permutation of the numbers from 1 to the number of objects in x, specifying the order in
which the ultrametric constraints are considered, or a list of such permutations.

maxiter an integer giving the maximal number of iterations to be employed.

tol a double indicating the maximal convergence tolerance. The algorithm stops if the total abso-
lute change in the dissimilarities in an iteration is less than tol.

verbose a logical indicating whether to provide some output on minimization progress. Defaults
to getOption("verbose").

If permutations are provided via order, the number of these gives the number of runs to be per-
formed, and control option nruns is ignored. Otherwise, nruns randomly generated orders are
tried. In the case of multiple runs, the (first) best solution found is returned.

Non-identical weights and incomplete dissimilarities are currently not supported.

Method "IR" implements the Iterative Reduction approach suggested by Roux (1988), see also
Barthélémy and Guénoche (1991). This is similar to the Iterative Projection method, but modi-
fies the dissimilarities between objects proportionally to the aggregated change incurred from the
ultrametric projections. Available control parameters are identical to those of method "IP".

Non-identical weights and incomplete dissimilarities are currently not supported.

It should be noted that all methods are heuristics which can not be guaranteed to find the global
minimum. Standard practice would recommend to use the best solution found in “sufficiently many”
replications of the base algorithm.

Value

An object of class "cl_ultrametric" containing the fitted ultrametric distances.

References

J.-P. Barthélémy and A. Guénoche (1991). Trees and proximity representations. Chichester: John
Wiley & Sons. ISBN 0-471-92263-3.

J. D. Carroll and S. Pruzansky (1980). Discrete and hybrid scaling models. In E. D. Lantermann
and H. Feger (eds.), Similarity and Choice. Bern (Switzerland): Huber.

L. Hubert and P. Arabie (1995). Iterative projection strategies for the least squares fitting of tree
structures to proximity data. British Journal of Mathematical and Statistical Psychology, 48, 281–
317. doi:10.1111/j.20448317.1995.tb01065.x.

M. Krivanek and J. Moravek (1986). NP-hard problems in hierarchical tree clustering. Acta Infor-
matica, 23, 311–323. doi:10.1007/BF00289116.

M. Roux (1988). Techniques of approximation for building two tree structures. In C. Hayashi
and E. Diday and M. Jambu and N. Ohsumi (Eds.), Recent Developments in Clustering and Data
Analysis, pages 151–170. New York: Academic Press.

G. de Soete (1984). Ultrametric tree representations of incomplete dissimilarity data. Journal of
Classification, 1, 235–242. doi:10.1007/BF01890124.

G. de Soete (1986). A least squares algorithm for fitting an ultrametric tree to a dissimilarity matrix.
Pattern Recognition Letters, 2, 133–137. doi:10.1016/01678655(84)900369.

https://doi.org/10.1111/j.2044-8317.1995.tb01065.x
https://doi.org/10.1007/BF00289116
https://doi.org/10.1007/BF01890124
https://doi.org/10.1016/0167-8655%2884%2990036-9
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See Also

cl_consensus for computing least squares (Euclidean) consensus hierarchies by least squares fit-
ting of average ultrametric distances; l1_fit_ultrametric.

Examples

## Least squares fit of an ultrametric to the Miller-Nicely consonant
## phoneme confusion data.
data("Phonemes")
## Note that the Phonemes data set has the consonant misclassification
## probabilities, i.e., the similarities between the phonemes.
d <- as.dist(1 - Phonemes)
u <- ls_fit_ultrametric(d, control = list(verbose = TRUE))
## Cophenetic correlation:
cor(d, u)
## Plot:
plot(u)
## ("Basically" the same as Figure 1 in de Soete (1986).)

n_of_classes Classes in a Partition

Description

Determine the number of classes and the class ids in a partition of objects.

Usage

n_of_classes(x)
cl_class_ids(x)
as.cl_class_ids(x)

Arguments

x an object representing a (hard or soft) partition (for n_of_classes and cl_class_ids),
or raw class ids (for as.cl_class_ids).

Details

These function are generic functions.

The methods provided in package clue handle the partitions obtained from clustering functions in
the base R distribution, as well as packages RWeka, cba, cclust, cluster, e1071, flexclust, flexmix,
kernlab, mclust, movMF and skmeans (and of course, clue itself).

Note that the number of classes is taken as the number of distinct class ids actually used in the
partition, and may differ from the number of columns in a membership matrix representing the
partition.

as.cl_class_ids can be used for coercing “raw” class ids (given as atomic vectors) to class id
objects.
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Value

For n_of_classes, an integer giving the number of classes in the partition.

For cl_class_ids, a vector of integers with the corresponding class ids. For soft partitions, the
class ids returned are those of the nearest hard partition obtained by taking the class ids of the (first)
maximal membership values.

See Also

is.cl_partition

Examples

data("Cassini")
party <- kmeans(Cassini$x, 3)
n_of_classes(party)
## A simple confusion matrix:
table(cl_class_ids(party), Cassini$classes)
## For an "oversize" membership matrix representation:
n_of_classes(cl_membership(party, 6))

n_of_objects Number of Objects in a Partition or Hierarchy

Description

Determine the number of objects from which a partition or hierarchy was obtained.

Usage

n_of_objects(x)

Arguments

x an R object representing a (hard of soft) partition or a hierarchy of objects, or
dissimilarities between objects.

Details

This is a generic function.

The methods provided in package clue handle the partitions and hierarchies obtained from clus-
tering functions in the base R distribution, as well as packages RWeka, ape, cba, cclust, cluster,
e1071, flexclust, flexmix, kernlab, mclust, movMF and skmeans (and of course, clue itself).

There is also a method for object dissimilarities which inherit from class "dist".

Value

An integer giving the number of objects.
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See Also

is.cl_partition, is.cl_hierarchy

Examples

data("Cassini")
pcl <- kmeans(Cassini$x, 3)
n_of_objects(pcl)
hcl <- hclust(dist(USArrests))
n_of_objects(hcl)

partition Partitions

Description

Determine whether an R object represents a partition of objects, or coerce to an R object represent-
ing such.

Usage

is.cl_partition(x)
is.cl_hard_partition(x)
is.cl_soft_partition(x)

as.cl_partition(x)
as.cl_hard_partition(x)

Arguments

x an R object.

Details

is.cl_partition and is.cl_hard_partition are generic functions.

The methods provided in package clue handle the partitions obtained from clustering functions in
the base R distribution, as well as packages RWeka, cba, cclust, cluster, e1071, flexclust, flexmix,
kernlab, mclust, movMF and skmeans (and of course, clue itself).

is.cl_soft_partition gives true iff is.cl_partition is true and is.cl_hard_partition is
false.

as.cl_partition returns an object of class "cl_partition" “containing” the given object x if
this already represents a partition (i.e., is.cl_partition(x) is true), or the memberships obtained
from x via as.cl_membership.

as.cl_hard_partition(x) returns an object which has class "cl_hard_partition" and inherits
from "cl_partition", and contains x if it already represents a hard partition (i.e., provided that
is.cl_hard_partition(x) is true), or the class ids obtained from x, using x if this is an atomic
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vector of raw class ids, or, if x represents a soft partition or is a raw matrix of membership values,
using the class ids of the nearest hard partition, defined by taking the class ids of the (first) maximal
membership values.

Conceptually, partitions and hard partitions are virtual classes, allowing for a variety of representa-
tions.

There are group methods for comparing partitions and computing their minimum, maximum, and
range based on the meet and join operations, see cl_meet.

Value

For the testing functions, a logical indicating whether the given object represents a clustering of
objects of the respective kind.

For the coercion functions, a container object inheriting from "cl_partition", with a suitable
representation of the partition given by x.

Examples

data("Cassini")
pcl <- kmeans(Cassini$x, 3)
is.cl_partition(pcl)
is.cl_hard_partition(pcl)
is.cl_soft_partition(pcl)

pclust Prototype-Based Partitioning

Description

Obtain prototype-based partitions of objects by minimizing the criterion
∑

wbu
m
bjd(xb, pj)

e, the
sum of the case-weighted and membership-weighted e-th powers of the dissimilarities between the
objects xb and the prototypes pj , for suitable dissimilarities d and exponents e.

Usage

pclust(x, k, family, m = 1, weights = 1, control = list())
pclust_family(D, C, init = NULL, description = NULL, e = 1,

.modify = NULL, .subset = NULL)
pclust_object(prototypes, membership, cluster, family, m = 1,

value, ..., classes = NULL, attributes = NULL)

Arguments

x the object to be partitioned.

k an integer giving the number of classes to be used in the partition.

family an object of class "pclust_family" as generated by pclust_family, contain-
ing the information about d and e.
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m a number not less than 1 controlling the softness of the partition (as the “fuzzi-
fication parameter” of the fuzzy c-means algorithm). The default value of 1
corresponds to hard partitions obtained from a generalized k-means problem;
values greater than one give partitions of increasing softness obtained from a
generalized fuzzy c-means problem.

weights a numeric vector of non-negative case weights. Recycled to the number of ele-
ments given by x if necessary.

control a list of control parameters. See Details.

D a function for computing dissimilarities d between objects and prototypes.

C a ‘consensus’ function with formals x, weights and control for computing a
consensus prototype p minimizing

∑
b wbd(xb, p)

e.

init a function with formals x and k initializing an object with k prototypes from the
object x to be partitioned.

description a character string describing the family.

e a number giving the exponent e of the criterion.

.modify a function with formals x, i and value for modifying a single prototype, or NULL
(default).

.subset a function with formals x and i for subsetting prototypes, or NULL (default).

prototypes an object representing the prototypes of the partition.

membership an object of class "cl_membership" with the membership values ubj .

cluster the class ids of the nearest hard partition.

value the value of the criterion to be minimized.

... further elements to be included in the generated pclust object.

classes a character vector giving further classes to be given to the generated pclust object
in addition to "pclust", or NULL (default).

attributes a list of attributes, or NULL (default).

Details

For m = 1, a generalization of the Lloyd-Forgy variant of the k-means algorithm is used, which
iterates between reclassifying objects to their closest prototypes (according to the dissimilarities
given by D), and computing new prototypes as the consensus for the classes (using C).

For m > 1, a generalization of the fuzzy c-means recipe (e.g., Bezdek (1981)) is used, which alter-
nates between computing optimal memberships for fixed prototypes, and computing new prototypes
as the suitably weighted consensus clusterings for the classes.

This procedure is repeated until convergence occurs, or the maximal number of iterations is reached.

Currently, no local improvement heuristics are provided.

It is possible to perform several runs of the procedure via control arguments nruns or start (the
default is to perform a single run), in which case the first partition with the smallest value of the
criterion is returned.

The dissimilarity and consensus functions as well as the exponent e are specified via family. In
principle, arbitrary representations of objects to be partitioned and prototypes (which do not neces-
sarily have to be “of the same kind”) can be employed. In addition to D and C, what is needed are
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means to obtain an initial collection of k prototypes (init), to modify a single prototype (.modify),
and subset the prototypes (.subset). By default, list and (currently, only dense) matrix (with the
usual convention that the rows correspond to the objects) are supported. Otherwise, the family has
to provide the functions needed.

Available control parameters are as follows.

maxiter an integer giving the maximal number of iterations to be performed. Defaults to 100.

nruns an integer giving the number of runs to be performed. Defaults to 1.

reltol the relative convergence tolerance. Defaults to sqrt(.Machine$double.eps).

start a list of prototype objects to be used as starting values.

verbose a logical indicating whether to provide some output on minimization progress. Defaults
to getOption("verbose").

control control parameters to be used in the consensus function.

The fixed point approach employed is a heuristic which cannot be guaranteed to find the global
minimum, in particular if C is not an exact minimizer. Standard practice would recommend to use
the best solution found in “sufficiently many” replications of the base algorithm.

Value

pclust returns the partition found as an object of class "pclust" (as obtained by calling pclust_object)
which in addition to the default components contains call (the matched call) and a converged at-
tribute indicating convergence status (i.e., whether the maximal number of iterations was reached).

pclust_family returns an object of class "pclust_family", which is a list with components cor-
responding to the formals of pclust_family.

pclust_object returns an object inheriting from class "pclust", which is a list with components
corresponding to the formals (up to and including ...) of pclust_object, and additional classes
and attributes specified by classes and attributes, respectively.

References

J. C. Bezdek (1981). Pattern recognition with fuzzy objective function algorithms. New York:
Plenum.

See Also

kmeans, cmeans.
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Phonemes Miller-Nicely Consonant Phoneme Confusion Data

Description

Miller-Nicely data on the auditory confusion of 16 consonant phonemes.

Usage

data("Phonemes")

Format

A symmetric matrix of the misclassification probabilities of 16 English consonant phonemes.

Details

Miller and Nicely (1955) obtained the confusions by exposing female subjects to a series of syllables
consisting of one of the 16 consonants followed by the vowel ‘a’ under 17 different experimental
conditions. The data provided are obtained from aggregating the six so-called flat-noise condi-
tions in which only the speech-to-noise ratio was varied into a single matrix of misclassification
frequencies.

Source

The data set is also contained in file ‘mapclus.data’ in the shell archive https://netlib.org/
mds/mapclus.shar.

References

G. A. Miller and P. E. Nicely (1955). An analysis of perceptual confusions among some English
consonants. Journal of the Acoustical Society of America, 27, 338–352. doi:10.1121/1.1907526.

solve_LSAP Solve Linear Sum Assignment Problem

Description

Solve the linear sum assignment problem using the Hungarian method.

Usage

solve_LSAP(x, maximum = FALSE)

https://netlib.org/mds/mapclus.shar
https://netlib.org/mds/mapclus.shar
https://doi.org/10.1121/1.1907526
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Arguments

x a matrix with nonnegative entries and at least as many columns as rows.

maximum a logical indicating whether to minimize of maximize the sum of assigned costs.

Details

If nr and nc are the numbers of rows and columns of x, solve_LSAP finds an optimal assignment of
rows to columns, i.e., a one-to-one map p of the numbers from 1 to nr to the numbers from 1 to nc
(a permutation of these numbers in case x is a square matrix) such that

∑nr
i=1 x[i, p[i]] is minimized

or maximized.

This assignment can be found using a linear program (and package lpSolve provides a function
lp.assign for doing so), but typically more efficiently and provably in polynomial time O(n3)
using primal-dual methods such as the so-called Hungarian method (see the references).

Value

An object of class "solve_LSAP" with the optimal assignment of rows to columns.

Author(s)

Walter Böhm <Walter.Boehm@wu.ac.at> kindly provided C code implementing the Hungarian
method.

References

C. Papadimitriou and K. Steiglitz (1982), Combinatorial Optimization: Algorithms and Complexity.
Englewood Cliffs: Prentice Hall.

Examples

x <- matrix(c(5, 1, 4, 3, 5, 2, 2, 4, 4), nrow = 3)
solve_LSAP(x)
solve_LSAP(x, maximum = TRUE)
## To get the optimal value (for now):
y <- solve_LSAP(x)
sum(x[cbind(seq_along(y), y)])

sumt Sequential Unconstrained Minimization Technique

Description

Solve constrained optimization problems via the Sequential Unconstrained Minimization Technique
(SUMT).
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Usage

sumt(x0, L, P, grad_L = NULL, grad_P = NULL, method = NULL,
eps = NULL, q = NULL, verbose = NULL, control = list())

Arguments

x0 a list of starting values, or a single starting value.

L a function to minimize.

P a non-negative penalty function such that P (x) is zero iff the constraints are
satisfied.

grad_L a function giving the gradient of L, or NULL (default).

grad_P a function giving the gradient of P, or NULL (default).

method a character string, or NULL. If not given, "CG" is used. If equal to "nlm", mini-
mization is carried out using nlm. Otherwise, optim is used with method as the
given method.

eps the absolute convergence tolerance. The algorithm stops if the (maximum) dis-
tance between successive x values is less than eps.
Defaults to sqrt(.Machine$double.eps).

q a double greater than one controlling the growth of the ρk as described in De-
tails.
Defaults to 10.

verbose a logical indicating whether to provide some output on minimization progress.
Defaults to getOption("verbose").

control a list of control parameters to be passed to the minimization routine in case
optim is used.

Details

The Sequential Unconstrained Minimization Technique is a heuristic for constrained optimization.
To minimize a function L subject to constraints, one employs a non-negative function P penalizing
violations of the constraints, such that P (x) is zero iff x satisfies the constraints. One iteratively
minimizes L(x) + ρkP (x), where the ρ values are increased according to the rule ρk+1 = qρk for
some constant q > 1, until convergence is obtained in the sense that the Euclidean distance between
successive solutions xk and xk+1 is small enough. Note that the “solution” x obtained does not
necessarily satisfy the constraints, i.e., has zero P (x). Note also that there is no guarantee that
global (approximately) constrained optima are found. Standard practice would recommend to use
the best solution found in “sufficiently many” replications of the algorithm.

The unconstrained minimizations are carried out by either optim or nlm, using analytic gradients if
both grad_L and grad_P are given, and numeric ones otherwise.

If more than one starting value is given, the solution with the minimal augmented criterion function
value is returned.
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Value

A list inheriting from class "sumt", with components x, L, P, and rho giving the solution obtained,
the value of the criterion and penalty function at x, and the final ρ value used in the augmented
criterion function.

References

A. V. Fiacco and G. P. McCormick (1968). Nonlinear programming: Sequential unconstrained
minimization techniques. New York: John Wiley & Sons.
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